Welcome to the Rice University Class of 2020!

This booklet is designed to give you an overview of the departments and undergraduate degree programs available in the Wiess School of Natural Sciences. We’ve included some general advice and reference information, descriptions of each of our departments and programs, and degree summaries and sample degree plans for each science degree.

This booklet is intended as a supplement to, not a replacement for, other department advising materials. While we have double- and triple-checked all of the information in this booklet for accuracy, it is always possible that an error may still be included. The information in the General Announcements is the final authority on degree requirements and academic regulations at Rice.
As an incoming freshman at Rice, you have many advisors available to you. Your College Master has chosen four Divisional Advisors who are associated with your residential college, one from each of the four major undergraduate divisions: engineering, humanities, natural sciences, and social sciences. Each residential college also has a group of Peer Academic Advisors available to assist the Divisional Advisors. These advisors can help you explore the majors in each of the four divisions based on your personal interests and short and long term plans.

When you declare your major, your department will assign you to a Major Advisor. These faculty members represent a specific department or discipline and know all of the requirements for the major or minor. They can provide you with detailed information related to their discipline, including research opportunities, career paths, professional organizations, and graduate school. You do not need to wait until you declare a major to consult with a Major Advisor. If you are interested in pursuing a major and need specific guidance or advice, contact a Major Advisor. You can find the names and contact information for the Major Advisors in the School of Natural Sciences at the back of this booklet.

Start talking to your advisors as early as possible. There are many paths to each degree and the best courses for you may depend on your preparation and career aspirations. Your advisors can provide you with input on taking classes in a sensible order and also on how to pursue research opportunities.
Many Rice freshmen have substantial AP credit, particularly in math, physics, and chemistry. Think carefully about your course plan - just because you have advanced placement does not mean that you have the background needed for the next courses. You do not want to get underwater during your first year. Many students with AP credit for introductory courses still choose to take the introductory sequence at Rice to provide a solid foundation for more advanced coursework. Consult with your advisors to determine the appropriate placement for you.
Degree Planning

Get your prerequisites in early. Identify all prerequisites for future courses so that you are positioned to take the required courses at the right stage in your time at Rice.

Some courses may only be offered once per year or once every other year. Take this into account when planning your schedule.

Remember to look at the courses taught in other departments that overlap with your interests. For example, there are mathematics courses taught in CAAM and STAT that are not offered in MATH.
Choosing a BA or BS Degree

Most of our departments offer both a Bachelor of Arts degree (BA) and a Bachelor of Science degree (BS). If you have the choice between a BS or a BA, consider the requirements of each degree, your planned major(s) and/or minor(s), and your graduate school or career plans.

In general, a BA program contains more free elective hours than its BS counterpart. This flexibility makes it easier for you to pursue your other interests, a double major, or a minor. The major requirements and a sample degree plan for both the BA and BS are included in this booklet. Look through these to understand the different requirements and how they work with your planned course schedule.

If you are planning to go to graduate school or pursue a career in a scientific discipline, you should consider the BS degree. If you are preparing for a career that is not primarily in that scientific discipline and want to pursue other areas of interest, the BA degree might be right for you.

And, as always, you can talk with your peer and faculty advisors to help you decide which is the right path for you.
Participation in science research is encouraged for all students and is required for several of the BS degrees. Mentored research opportunities complement classroom learning and help you build the skills and confidence you need to compete for top job prospects and spots in graduate and medical schools.

There are many opportunities to research with Rice faculty and with our partners at the Texas Medical Center. You are encouraged to begin research as early as possible and can participate for multiple semesters or summers. See the Frank Advice section in each department listing for additional program-specific advice.

Getting Started

- Talk to your advisors and to your professors. Did you cover something really interesting in class today? Stay after class for a few minutes or head to office hours to talk to your professor. They can point you towards faculty members who are doing research in that area or working on similar problems.

- Check departmental websites and faculty research pages for descriptions of their research as well as links to their publications.

- Go to departmental seminars and events. Talk to people while you are there; don’t just sit in the back. Attend the Natural Sciences Undergraduate Research Showcase and the Rice Undergraduate Research Symposium (held each spring) to see student research poster presentations. Also, look at the posters in the hallways on your way to or from class or lab.
Research

Contacting a Potential Advisor

• Once you’ve found a group that you might like to join, it’s time to contact your potential advisor. The easiest way to do this is to email the faculty member to set up a meeting. Use an informative subject line to make your purpose clear and open and close your email formally. Provide some of your background information, including what year you are and what your major is. Briefly describe how you found out about their research and express your interest in a specific paper or research topic. Ask them to set up a meeting and provide your availability.

• Show up to your meeting on time and be prepared. Review a few papers and brush up on any appropriate classroom content. Be ready to tell the professor why you are interested in their work, how it fits with your background and your future goals. Also, know your schedule and what time you have available to work in their lab.

• Don’t take a negative response personally. There are many reasons a faculty member might not be able to take you on right now. Keep looking; there is a research experience out there that is perfect for you.
Majoring in a scientific discipline does not increase your chance of acceptance to medical school. However, strong preparation in the sciences and mathematics is required for medical school study. If you are considering a career in health-related occupations, consult with your advising team to ensure that your degree plan includes all of the necessary courses.

The Office of Academic Advising offers specialized advising services for pre-med and other pre-health professions students. Each fall, they present an introduction to the health professions designed to help new, first-year students. This year, the Health Professions Advising Orientation will be offered on Wednesday, August 24, from 6-7 PM in the Grand Hall.

Consider taking a course designed to help you determine if medical school is the right fit for you. **NSCI 399: Medical Professionalism and Observership (MPRO)** consists of lectures to enhance knowledge of medical professionalism, an intense writing experience aimed at reflecting on experiences in both the lectures and clinical settings, and an opportunity to shadow a physician and/or observe in the operating room, intensive care unit or other clinical unit at Houston Methodist hospital.
International experiences are encouraged for all interested students. If you are considering studying abroad, early planning and consultation is highly recommended. Contact a department Major Advisor as early as possible to discuss all of your available options. Departmental Transfer Credit Advisors will also serve as a valuable resource for information about receiving academic credit for courses completed abroad.

Think about your goals. Do you want to study abroad for a semester or a summer? Do you want to fulfill major, minor or distribution requirements or study something entirely new?

Consider your individual four-year program and evaluate what period for study abroad is most compatible with your overall degree plan and post-graduate plans.

Visit the Rice University Study Abroad website (abroad.rice.edu) for all of the information you need to start planning your study abroad experience.
Departments and Programs

In this section, you will find information about each of our departments and programs, including advice and tips to help you choose your major and design your degree plan. The School of Natural Sciences offers 19 majors and seven minors within our departments and interdisciplinary programs. We list the degree requirements and provide a sample degree plan for each major and minor.

Sample Degree Plans

The provided degree summaries and sample degree plans for each of the degrees offered in the School of Natural Sciences are intended to help you compare majors and provide a starting point for designing your own course schedule.

The sample degree plan is only one of many possible schedules. Consult with your advising team to develop a personalized degree plan that takes into account your background and interests.

- The sample degree plans in this booklet assume that you have no AP or transfer credit unless otherwise noted.

- You are assigned a semester in which to take a Freshman Writing Intensive Seminar (FWIS). In all degree plans, the FWIS is shown in the fall semester. If you are assigned to take a FWIS in the spring, swap the Distribution course listed for the spring semester with the FWIS listed for the fall semester.

- All sample degree plans assume that the FWIS will fulfill a Group I or Group II Distribution credit.
Faculty members in the Department of Biosciences have a deep commitment to students even as they pursue their own research programs. They share a love of the natural world that inspires their teaching and mentorship. Students at all levels engage in research in Biosciences laboratories, and many undergraduates publish work in top journals. The multiple major degree paths offered by the department will prepare you for graduate, medical, or other professional schools and a surprisingly wide range of careers in the life sciences.

The Biochemistry and Cell Biology (BIOC) program emphasizes a broad understanding of cell biology and biochemistry and provides room for exploration across Natural Sciences or Engineering. BIOC students are strongly encouraged to pursue their research interests through independent research experiences at Rice or other Houston-area institutions. The BIOC minor incorporates many of the life science core courses required for the health professions and is intended for those with an interest in the life sciences who may be majoring in other areas.

The Ecology and Evolutionary Biology (EBIO) program addresses important ecological and evolutionary questions with collaborative research initiatives and innovative ecological, evolutionary, and genomic tools. The coursework emphasizes a broad understanding of basic biology together with in-depth knowledge of ecology and evolutionary biology. Students pursuing a BS in EBIO are required to conduct independent research under the supervision or co-supervision of an EBIO faculty member, though the research can take place in other locations or institutions such as the Texas Medical Center or at field sites throughout the world. The EBIO minor is intended for those with an interest in the life sciences who are majoring in other areas.

The Biological Sciences degree incorporates elements of the EBIO and BIOC programs to give students a broad understanding of the full range of biological disciplines. Although Biological Sciences majors must distribute their upper-level electives between the two programs, they have few restrictions on which upper-level Biosciences courses they select. This flexibility gives Biological Sciences students the opportunity to design a path that suits their specific interests.
Biosciences

Degrees Offered

Biochemistry and Cell Biology (BIOC) BS, BA, Minor
Ecology and Evolutionary Biology (EBIO) BS, BA, Minor
Biological Sciences* BA

*As the Biological Sciences BA combines coursework from both BIOC and EBIO programs, this major may not be combined with any other Biosciences degree.

Frank Advice

• Take the BIOC prelab exam to prequalify for the BIOC lab sequence (lab exam and registration instructions can be found at: www.clear.rice.edu/bioc111).

• Those without biology AP credit should enroll in BIOC 201, which is a prerequisite for virtually all other biological sciences courses. EBIO 202 is a requirement for those majoring in Biological Sciences and EBIO.

• If you have AP credit and feel confident in your biology background, take BIOC 300 in the fall semester. This course is a transition to the upper level BIOC courses and counts toward a 300-level BIOC requirement if taken before any other 300-level BIOC course.

• Research opportunities for undergraduates are available in most Bioscience labs.
 ◦ BIOC students should visit the BIOC 310 course website (www.bioc.rice.edu/bioc310/) for more information and listings of opportunities.
 ◦ EBIO students are encouraged to get involved in research as early as possible. Applications for conducting senior research, required for the BS, are due at the end of the Spring semester one year prior to your anticipated graduation date.
Biosciences

- Not required but highly recommended courses:
 - BIOC 115/EBIO 116 – Freshman Seminar in Local Biology Research
 - BIOC 300 – Paradigms in Biochemistry and Cell Biology
 - BIOC 310/EBIO 306 – Independent Research for Undergraduates
 - EBIO 270 – Ecosystem Management

- Highly qualified students may apply to the Biochemistry & Cell Biology BA-MA-PhD program track. If you are interested in this option, you can find more information on the Biosciences website or talk to your advisor.
Biochemistry and Cell Biology BA - Requirements

MATH 101/102' Single Variable Calculus I and II
MATH 211 Ordinary Differential Equations
PHYS 125/126' General Physics I and II
CHEM 121/122/123/124' General Chemistry I and II and General Chemistry Lab I and II
CHEM 211/212/213/214 Organic Chemistry I and II and Organic Chemistry Discussion
CHEM 215 Organic Chemistry Lab
BIOC 201 Introductory Biology
BIOC 301 Biochemistry I
BIOC 341 Cell Biology

Two courses from:
 BIOC 302 Biochemistry II
 BIOC 344 Molecular Biology and Genetics
 BIOC 352' Physical Chemistry for the Biosciences

BIOC 211 Intermediate Experimental Biosciences
BIOC 311 Advanced Experimental Biosciences

Two courses from:
 BIOC 313 Introductory Synthetic Biology
 BIOC 318 Laboratory in Applied Microbiology
 BIOC 320/BIOE342 Laboratory in Tissue Culture
 BIOC 413 Experimental Molecular Biology
 BIOC 415 Experimental Physiology
 BIOC 530 NMR Spectroscopy and Molecular Modeling
 BIOC 532 Laboratory Module in Optical Spectroscopy
 BIOC 533 Bioinformatics and Computational Biology
 BIOC 535 Practical X-Ray Crystallography

One independent research experience:
 BIOC 310 (if at least 3 credits)
 HONS 470/471
 BIOC 401/402/412

One BIOC 400-level course

Two NSCI or ENGR 300-level or higher courses

* MATH 111/112 may substitute for MATH 101
CHEM 151/152/153/154 may substitute for CHEM 121/122/123/124
PHYS 101/102/103/104 or PHYS 111/112 may substitute for PHYS 125/126
CHEM 310 or CHEM 311/312 may substitute for BIOC 352
Biosciences

Biochemistry and Cell Biology BA

Fall

<table>
<thead>
<tr>
<th>FRESHMAN</th>
<th>15 credits</th>
<th>FRESHMAN</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>Intro Biology I</td>
<td>3</td>
<td>BIOC 211</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I</td>
<td>3</td>
<td>CHEM 122</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>General Chemistry Lab I</td>
<td>1</td>
<td>CHEM 124</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
<td>3</td>
<td>MATH 102</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
<td>LPAP</td>
</tr>
<tr>
<td>BIOC 111</td>
<td>Lab Fundamentals (or pass out)</td>
<td>1</td>
<td>DIST</td>
</tr>
<tr>
<td>BIOC 115</td>
<td>Freshman Seminar in Local Biology Research</td>
<td>1</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>SOPHOMORE</th>
<th>16 credits</th>
<th>SOPHOMORE</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCI/ENG</td>
<td>300+ level Elective</td>
<td>3</td>
<td>BIOC 344</td>
</tr>
<tr>
<td>PHYS 125</td>
<td>General Physics I</td>
<td>4</td>
<td>PHYS 126</td>
</tr>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>CHEM 212</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Organic Chemistry Discussion I</td>
<td>0</td>
<td>CHEM 214</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Differential Equations</td>
<td>3</td>
<td>CHEM 215</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>JUNIOR</th>
<th>15 credits</th>
<th>JUNIOR</th>
<th>17 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 301</td>
<td>Biochemistry I</td>
<td>3</td>
<td>BIOC 302</td>
</tr>
<tr>
<td>BIOC 310</td>
<td>Independent Research (Advanced Lab)</td>
<td>3</td>
<td>NSCI/ENG</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>BIOC 311</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>SENIOR</th>
<th>16 credits</th>
<th>SENIOR</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 341</td>
<td>Cell Biology</td>
<td>3</td>
<td>BIOC 4xx</td>
</tr>
<tr>
<td>BIOC Lab 300+</td>
<td>Advanced Lab</td>
<td>1</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective (BIOC 310)</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>
Biochemistry and Cell Biology BS - Requirements

MATH 101/102* Single Variable Calculus I and II
MATH 211 Ordinary Differential Equations
PHYS 125/126* General Physics I and II
CHEM 121/122/123/124* General Chemistry I and II and General Chemistry Lab I and II
CHEM 211/212/213/214 Organic Chemistry I and II and Organic Chemistry Discussion
CHEM 215 Organic Chemistry Lab

BIOC 201 Introductory Biology
BIOC 301 Biochemistry I
BIOC 341 Cell Biology

BIOC 302 Biochemistry II
BIOC 344 Molecular Biology and Genetics
BIOC 352* Physical Chemistry for the Biosciences

BIOC 211 Intermediate Experimental Biosciences
BIOC 311 Advanced Experimental Biosciences

Two courses from:

- BIOC 313 Introduction to Synthetic Biology
- BIOC 318 Laboratory in Applied Microbiology
- BIOC 320/BIOE342 Laboratory in Tissue Culture
- BIOC 413 Experimental Molecular Biology
- BIOC 415 Experimental Physiology
- BIOC 530 NMR Spectroscopy and Molecular Modeling
- BIOC 532 Laboratory Module in Optical Spectroscopy
- BIOC 533 Bioinformatics and Computational Biology
- BIOC 535 Practical X-Ray Crystallography

One independent research experience:

- BIOC 310 (if at least 3 credits)
- HONS 470/471
- BIOC 401/402/412

Two BIOC 400-level courses

Two NSCI or ENGR 300-level or higher courses

* MATH 111/112 may substitute for MATH 101
CHEM 151/152/153/154 may substitute for CHEM 121/122/123/124
PHYS 101/102/103/104 or PHYS 111/112 may substitute for PHYS 125/126
CHEM 310 or CHEM 311/312 may substitute for BIOC 352
Biochemistry and Cell Biology BS

F A L L

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>Intro Biology I</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>General Chemistry Lab I</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
</tr>
<tr>
<td>BIOC 111</td>
<td>Lab Fundamentals (or pass out)</td>
</tr>
<tr>
<td>BIOC115</td>
<td>Freshman Seminar in Local Biology Research</td>
</tr>
</tbody>
</table>

SPRING

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 211</td>
<td>Intermediate Experimental Biosciences</td>
</tr>
<tr>
<td>CHEM 122</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>General Chemistry Lab II</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Single Variable Calculus II</td>
</tr>
<tr>
<td>LPAP</td>
<td>Lifetime Physical Activity Elective</td>
</tr>
</tbody>
</table>

S O P H O M O R E

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCI/ENG 300+ Elective</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 125</td>
<td>General Physics I</td>
</tr>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Organic Chemistry Discussion I</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
</tbody>
</table>

S O P H O M O R E

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 344</td>
<td>Molecular Biology & Genetics</td>
</tr>
<tr>
<td>PHYS 126</td>
<td>General Physics II</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>CHEM 214</td>
<td>Organic Chemistry Discussion II</td>
</tr>
<tr>
<td>CHEM 215</td>
<td>Organic Chemistry Lab</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
</tbody>
</table>

J U N I O R

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 301</td>
<td>Biochemistry I</td>
</tr>
<tr>
<td>NSCI/ENG 300+ Elective</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 311</td>
<td>Advanced Experimental Biosciences</td>
</tr>
<tr>
<td>BIOC 310</td>
<td>Independent Research (Advanced Lab)</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
</tbody>
</table>

J U N I O R

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 302</td>
<td>Biochemistry II</td>
</tr>
<tr>
<td>BIOC 341</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
</tbody>
</table>

S E N I O R

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 4xx</td>
<td>400-level Elective</td>
</tr>
<tr>
<td>BIOC 352</td>
<td>Physical Chemistry for Biosciences</td>
</tr>
<tr>
<td>BIOC Lab 300+ Advanced Lab</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

S E N I O R

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 4xx</td>
<td>400-level Elective</td>
</tr>
<tr>
<td>BIOC 4xx</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

This is only one of many possible ways to fulfill your degree requirements.
Biochemistry and Cell Biology Minor - Requirements

MATH 101/102* Single Variable Calculus I and II
PHYS 125/126* General Physics I and II
CHEM 121/122/123/124* General Chemistry I and II and General Chemistry Lab I and II
CHEM 211/212/213/214 Organic Chemistry I and II and Organic Chemistry Discussion Lab
CHEM 215 Organic Chemistry Lab

BIOC 201 Introductory Biology
BIOC 211 Intermediate Experimental Biosciences
BIOC 301 Biochemistry
BIOC 341 Cell Biology

One BIOC lecture course at the 300-level or above

* MATH 111/112 may substitute for MATH 101
CHEM 151/152/153/154 may substitute for CHEM 121/122/123/124
PHYS 101/102/103/104 or PHYS 111/112 may substitute for PHYS 125/126
Ecology and Evolutionary Biology BA - Requirements

MATH 101/102* Single Variable Calculus I and II
EBIO 338 or STAT course Design and Analysis of Biological Experiments
CHEM 121/123* General Chemistry I and General Chemistry Lab I
PHYS 125* General Physics I

BIOC 201 Introductory Biology I
EBIO 202 Introductory Biology II
EBIO 325 Ecology
EBIO 334/BIOC 334 Evolution

BIOC 211 Intermediate Experimental Biosciences
EBIO 213 Introductory Lab in Ecology and Evolutionary Biology

EBIO 412 Advanced Communication in the Biosciences

Two lecture courses in Ecology and Evolutionary Biology from the list in the 2016 General Announcements

One lecture course in Biochemistry and Cell Biology from the list in the 2016 General Announcements

One EBIO laboratory course from the list in the 2016 General Announcements

One BIOC laboratory course from the list in the 2016 General Announcements

One NSCI or ENGR course (3 credit hours) at the 300-level or above

* MATH 111/112 may substitute for MATH 101
CHEM 151/153 may substitute for CHEM 121/123
PHYS 101/103 or PHYS 111 may substitute for PHYS 125
Ecology and Evolutionary Biology BA

Sample Degree Plan

<table>
<thead>
<tr>
<th>FRESHMAN</th>
<th>16 credits</th>
<th>FRESHMAN</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>Intro Biology I</td>
<td>3</td>
<td>EBIO 202</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I</td>
<td>3</td>
<td>EBIO 213</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>General Chemistry Lab I</td>
<td>1</td>
<td>MATH 102</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>BIOC 211</td>
<td>Intro Experimental Biosciences</td>
<td>2</td>
<td>LPAP</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>EBIO 116</td>
<td>Freshman Seminar on Local Biology Research</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE</th>
<th>17 credits</th>
<th>SOPHOMORE</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 125</td>
<td>General Physics I</td>
<td>4</td>
<td>EBIO 334</td>
</tr>
<tr>
<td>EBIO Lab</td>
<td>EBIO Laboratory</td>
<td>1</td>
<td>EBIO 300+</td>
</tr>
<tr>
<td>STAT 305</td>
<td>Intro to Statistics for Biosciences</td>
<td>3</td>
<td>BIOC Lab</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR</th>
<th>15 credits</th>
<th>JUNIOR</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBIO 325</td>
<td>Ecology</td>
<td>3</td>
<td>EBIO 300+</td>
</tr>
<tr>
<td>BIOC 300+</td>
<td>BIOC Lecture</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR</th>
<th>15 credits</th>
<th>SENIOR</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBIO 412</td>
<td>Advanced Communication in the Biosciences</td>
<td>3</td>
<td>NSCI/ENG</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

This is only one of many possible ways to fulfill your degree requirements.
Ecology and Evolutionary Biology BS - Requirements

MATH 101/102 * Single Variable Calculus I and II
EBIO 338 or STAT course Design and Analysis of Biological Experiments
CHEM 121/123 * General Chemistry I and General Chemistry Lab I
PHYS 125 * General Physics I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>EBIO 202</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>EBIO 325</td>
<td>Ecology</td>
</tr>
<tr>
<td>EBIO 334/BIOC 334</td>
<td>Evolution</td>
</tr>
<tr>
<td>BIOC 211</td>
<td>Intermediate Experimental Biosciences</td>
</tr>
<tr>
<td>EBIO 213</td>
<td>Introductory Lab in Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>EBIO 412</td>
<td>Advanced Communication in the Biosciences</td>
</tr>
<tr>
<td>EBIO 306</td>
<td>Independent Research (at least 2 credit hours)</td>
</tr>
<tr>
<td>EBIO 403/404</td>
<td>Senior Research</td>
</tr>
</tbody>
</table>

Two lecture courses in Ecology and Evolutionary Biology from the list in the 2016 General Announcements

One lecture course in Biochemistry and Cell Biology from the list in the 2016 General Announcements

One EBIO laboratory course from the list in the 2016 General Announcements

One BIOC laboratory course from the list in the 2016 General Announcements

One NSCI or ENGR course (3 credit hours) at the 300-level or above

* MATH 111/112 may substitute for MATH 101
CHEM 151/153 may substitute for CHEM 121/123
PHYS 101/103 or PHYS 111 may substitute for PHYS 125
Ecology and Evolutionary Biology BS

Sample Degree Plan

This is only one of many possible ways to fulfill your degree requirements.

<table>
<thead>
<tr>
<th>FALL</th>
<th>16 credits</th>
<th>SPRING</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201 Intro Biology I</td>
<td>3</td>
<td>EBI 202 Intro Biology II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 121 General Chemistry I</td>
<td>3</td>
<td>EBI 213 Intro Lab in EEB</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 123 General Chemistry Lab I</td>
<td>1</td>
<td>MATH 102 Single Variable Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101 Single Variable Calculus I</td>
<td>3</td>
<td>DIST Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 211 Intro Experimental Biosciences</td>
<td>2</td>
<td>OPEN Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>FWIS First Year Writing-Intensive Seminar</td>
<td>3</td>
<td>LPAP Lifetime Physical Activity Elective</td>
<td>1</td>
</tr>
<tr>
<td>EBI 116 Freshman Seminar on Local Biology Research</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE</th>
<th>17 credits</th>
<th>SOPHOMORE</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 125 General Physics I</td>
<td>4</td>
<td>EBI 334 Evolution</td>
<td>3</td>
</tr>
<tr>
<td>EBI 213 Intro Lab in EEB</td>
<td>3</td>
<td>BIOC Lecture</td>
<td>3</td>
</tr>
<tr>
<td>STAT 305 Intro to Statistics for Biosciences</td>
<td>3</td>
<td>BIOC Lab</td>
<td>1</td>
</tr>
<tr>
<td>DIST Distribution Course</td>
<td>3</td>
<td>DIST Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN Open Elective</td>
<td>3</td>
<td>OPEN Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN Open Elective</td>
<td>3</td>
<td>OPEN Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR</th>
<th>14 credits</th>
<th>JUNIOR</th>
<th>14 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBI 325 Ecology</td>
<td>3</td>
<td>EBI 300+ EBI Lecture</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 300+ BIOC Lecture</td>
<td>3</td>
<td>EBI 306 Independent Research</td>
<td>2</td>
</tr>
<tr>
<td>NSCI/ENG 300+ level Elective</td>
<td>3</td>
<td>DIST Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>EBI 306 Independent Research</td>
<td>2</td>
<td>OPEN Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>DIST Distribution Course</td>
<td>3</td>
<td>OPEN Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR</th>
<th>16 credits</th>
<th>SENIOR</th>
<th>14 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBI 403 Senior Research</td>
<td>5</td>
<td>EBI 404 Senior Research</td>
<td>5</td>
</tr>
<tr>
<td>EBI 412 Advanced Communication in the Biosciences</td>
<td>2</td>
<td>DIST Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>DIST Distribution Course</td>
<td>3</td>
<td>OPEN Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN Open Elective</td>
<td>3</td>
<td>OPEN Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN Open Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is only one of many possible ways to fulfill your degree requirements.
Ecology and Evolutionary Biology Minor - Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>Introductory Biology</td>
</tr>
<tr>
<td>EBIO 202</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>EBIO 213</td>
<td>Introductory Lab in Ecology and Evolutionary Biology</td>
</tr>
</tbody>
</table>

Four lecture courses from the list in the 2016 General Announcements
Biological Sciences BA - Requirements

MATH 101/102’ Single Variable Calculus I and II
MATH 211 or STAT 305 or EBIO 338 Differential Equations or Biological Statistics or Design
and Analysis of Biological Experiments
CHEM 121/122/123/124’ General Chemistry I and II and General Chemistry Lab I and II
CHEM 211/212/213/214 Organic Chemistry I and II and Organic Chemistry Discussion
CHEM 215 Organic Chemistry Lab
PHYS 125/126’ General Physics I and II

BIOC 201 Introductory Biology
EBIO 202 Introductory Biology II

BIOC 211 Intermediate Experimental Biosciences
EBIO 213 Introductory Lab in Ecology and Evolutionary Biology

Three advanced biology lab courses from the list in the 2016 General Announcements
BIOC 301 Biochemistry

One course from:
- BIOC 302 Biochemistry II
- BIOC 341 Cell Biology
- BIOC 344 Molecular Biology and Genetics
- BIOC 352’ Physical Chemistry for the Biosciences

Three or four EBIO lecture courses from the list in the 2016 General Announcements.
If you choose to complete three EBIO lecture courses, you are required to complete two BIOC lecture courses.

One or two BIOC lecture courses from the list in the 2016 General Announcements.
If you choose to complete one BIOC lecture course, you are required to complete four EBIO lecture courses.

* MATH 111/112 may substitute for MATH 101
CHEM 151/152/153/154 may substitute for CHEM 121/122/123/124
CHEM 320 may substitute for CHEM 212
CHEM 365 may substitute for CHEM 215
PHYS 101/102/103/104 or PHYS 111/112 may substitute for PHYS 125/126
CHEM 310 or CHEM 311/312 may substitute for BIOC 352

A maximum of 3 credits of BIO 390 and 3 credits of EBIO 391 can apply to this major.
Biosciences

Biological Sciences BA

Sample Degree Plan

This is only one of many possible ways to fulfill your degree requirements.

Fall

<table>
<thead>
<tr>
<th>Freshman</th>
<th>16 credits</th>
<th>Freshman</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>3</td>
<td>EBIO 202</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>3</td>
<td>CHEM 122</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>1</td>
<td>CHEM 124</td>
<td>1</td>
</tr>
<tr>
<td>MATH 101</td>
<td>3</td>
<td>MATH 102</td>
<td>3</td>
</tr>
<tr>
<td>EBIO 213</td>
<td>2</td>
<td>BIOC 211</td>
<td>2</td>
</tr>
<tr>
<td>FWIS</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 111</td>
<td>1</td>
<td>LPAP</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Freshman</th>
<th>16 credits</th>
<th>Freshman</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>3</td>
<td>EBIO 202</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>3</td>
<td>CHEM 122</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>1</td>
<td>CHEM 124</td>
<td>1</td>
</tr>
<tr>
<td>MATH 101</td>
<td>3</td>
<td>MATH 102</td>
<td>3</td>
</tr>
<tr>
<td>EBIO 213</td>
<td>2</td>
<td>BIOC 211</td>
<td>2</td>
</tr>
<tr>
<td>FWIS</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 111</td>
<td>1</td>
<td>LPAP</td>
<td>1</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>16 credits</th>
<th>Sophomore</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBIO 300+</td>
<td>3</td>
<td>EBIO 300+</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 125</td>
<td>4</td>
<td>PHYS 126</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 211</td>
<td>3</td>
<td>CHEM 212</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>0</td>
<td>CHEM 214</td>
<td>0</td>
</tr>
<tr>
<td>MATH 211</td>
<td>3</td>
<td>CHEM 215</td>
<td>2</td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Junior</th>
<th>16 credits</th>
<th>Junior</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 301</td>
<td>3</td>
<td>BIOC 302, 341, 344, or 352</td>
<td>3</td>
</tr>
<tr>
<td>EBIO 300+</td>
<td>3</td>
<td>BIOC/EBIO Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIOC/EBIO Lab</td>
<td>1</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Senior</th>
<th>16 credits</th>
<th>Senior</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC/EBIO 300+</td>
<td>3</td>
<td>BIOC 300+</td>
<td>3</td>
</tr>
<tr>
<td>BIOC/EBIO Lab</td>
<td>1</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>1</td>
</tr>
</tbody>
</table>

Biological Sciences BA:

This is only one of many possible ways to fulfill your degree requirements.
Chemistry at Rice is where innovation meets collaboration. Two Nobel laureates, dominance in the field of nanoscale science and technology, and significant contributions to both bioscience and materials science have propelled the Department of Chemistry to unparalleled status over the past two decades. Since Chemistry holds a unique position in science and technology, it has been the nucleus of collaboration across departments and schools.

The BS program rigorously prepares students for Ph.D. programs in chemistry and related disciplines. The degree requirements are consistent with the guidelines for certification by the American Chemical Society. BS students complete a series of foundation courses in general chemistry and each of the core areas of chemistry: analytical, biological, inorganic, organic, and physical. Students then complete a specialization in one or more of these areas. This curriculum provides a broad and comprehensive introduction to core areas of chemistry while establishing deep understanding in one or more specific fields.

The BA degree is a more flexible program that provides a broad overview of chemistry, but includes less focused study on any single area. The chemistry BA is an ideal background for premedical students, as it requires only 10 credit hours over the standard premedical requirements. It also couples well with a second major for students who want to pair a science and non-science major for breadth of knowledge.

The Chemical Physics degree is jointly offered by the Department of Chemistry and the Department of Physics and Astronomy. It is designed for students with a strong aptitude in both chemistry and physics. Students take upper-level courses in both chemistry and physics, focusing on the applications of physics to chemical systems. Schedule a meeting with the Major Advisors listed in this booklet if you are interested in this interdisciplinary major.

Degrees Offered

- Chemistry: BS, BA
- Chemical Physics: BS
Chemistry

Frank Advice

• If you have chemistry AP credit and are confident in your background and ability to focus, you should be fine taking CHEM 211 as a freshman. If you are unsure whether to go straight to organic, start off going to both CHEM 151 and CHEM 211. Stay in the one that feels appropriate and drop the other. CHEM 211 is offered both semesters, so you can alternatively start organic in the spring (taking either CHEM 151 or no chemistry in the fall).

• Each student working towards a BS degree must complete advanced work in one specialization: Biological and Medicinal Chemistry, Inorganic Chemistry and Inorganic Materials, Organic Chemistry, or Physical and Theoretical Chemistry.

• BS students should complete three semesters of research, each with three or more credits. Seniors planning to pursue a Ph.D. should take Undergraduate Honors Research (CHEM 492 and 493), which includes independent research, a public presentation of findings, and a formal thesis.

• The best way to connect with a research advisor is to take the Freshman Chemistry Seminar, CHEM 110, which will introduce you to chemistry research labs at Rice and the Texas Medical Center.
Chemistry BA - Requirements

CHEM 151/152/153/154* Honors Chemistry I and II and Honors Chemistry Lab I and II
CHEM 211/213 Organic Chemistry I and Organic Chemistry Discussion
CHEM 330 Analytical Chemistry
CHEM 360 Inorganic Chemistry
BIOC 301 Biochemistry I

Two courses from:
- CHEM 311 Physical Chemistry I
- CHEM 312 Physical Chemistry II
- BIOC 352 Physical Chemistry for the Biosciences

MATH 101/102 Single Variable Calculus I and II
MATH 212* Multivariable Calculus

PHYS 101/103 or 111 or 125 Mechanics (with lab) and Mechanics Discussion or Mechanics (with lab) or General Physics (with lab)
PHYS 102/104 or 112 or 126 Electricity & Magnetism (with lab) and E & M Discussion or Electricity & Magnetism (with lab) or General Physics II (with lab)

Three courses from:
- CHEM 365 Organic Chemistry Laboratory
- CHEM 366 Inorganic Chemistry Laboratory
- CHEM 367 Materials Chemistry Laboratory
- CHEM 368 Chemical Measurement Laboratory
- BIOC 311 Advanced Experimental Biosciences

Two courses (six credit hours) from advanced chemistry work:
- 400-level courses or above
- CHEM 212 Organic Chemistry II
- CHEM 320 Organic Chemistry II
- BIOC 302 Biochemistry II

* CHEM 121/122/123/124 may substitute for CHEM 151/152/153/154
MATH 221/222 may substitute for MATH 212
Chemistry BA

This is only one of many possible ways to fulfill your degree requirements.

<table>
<thead>
<tr>
<th>FALL</th>
<th>17 credits</th>
<th>SPRING</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 151</td>
<td>Honors Chemistry I</td>
<td>3</td>
<td>CHEM 152</td>
</tr>
<tr>
<td>CHEM 153</td>
<td>Honors Chemistry Lab I</td>
<td>1</td>
<td>CHEM 154</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
<td>3</td>
<td>MATH 102</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Mechanics (with lab)</td>
<td>4</td>
<td>PHYS 102</td>
</tr>
<tr>
<td>PHYS 103</td>
<td>Mechanics Discussion</td>
<td>0</td>
<td>PHYS 104</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
<td>LPAP</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE</th>
<th>15 credits</th>
<th>SOPHOMORE</th>
<th>14 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>CHEM 320</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Organic Chemistry Discussion</td>
<td>0</td>
<td>CHEM 360</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Multivariable Calculus</td>
<td>3</td>
<td>CHEM 365</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR</th>
<th>17 credits</th>
<th>JUNIOR</th>
<th>14 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 311</td>
<td>Physical Chemistry I</td>
<td>3</td>
<td>CHEM 312</td>
</tr>
<tr>
<td>CHEM 366</td>
<td>Inorganic Chemistry Lab</td>
<td>2</td>
<td>CHEM 330</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>CHEM 368</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR</th>
<th>15 credits</th>
<th>SENIOR</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 301</td>
<td>Biochemistry I</td>
<td>3</td>
<td>CHEM 4xx</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Chemistry BS - Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 151/152/153/154*</td>
<td>Honors Chemistry I and II and Honors Chemistry Lab I and II</td>
</tr>
<tr>
<td>CHEM 211/213</td>
<td>Organic Chemistry I and Organic Chemistry Discussion</td>
</tr>
<tr>
<td>CHEM 311/312</td>
<td>Physical Chemistry I and II</td>
</tr>
<tr>
<td>CHEM 330</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>CHEM 360</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>BIOC 301</td>
<td>Biochemistry I</td>
</tr>
<tr>
<td>MATH 101/102</td>
<td>Single Variable Calculus I and II</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>PHYS 101/103 or 111 or 125</td>
<td>Mechanics (with lab) and Mechanics Discussion or Mechanics (with lab) or General Physics (with lab)</td>
</tr>
<tr>
<td>PHYS 102/104 or 112 or 126</td>
<td>Electricity & Magnetism (with lab) and E & M Discussion or Electricity & Magnetism (with lab) or General Physics II (with lab)</td>
</tr>
</tbody>
</table>

* Three courses from:
 - CHEM 365: Organic Chemistry Laboratory
 - CHEM 366: Inorganic Chemistry Laboratory
 - CHEM 367: Materials Chemistry Laboratory
 - CHEM 368: Chemical Measurement Laboratory
 - BIOC 311: Advanced Experimental Biosciences

* Eight credit hours of research from the list in the 2016 General Announcements. CHEM 391 must be for at least three credit hours.

* Each student must complete the requirements for one specialization.

Specialization in Biological and Medicinal Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 212/214 or CHEM 320</td>
<td>Organic Chemistry II and Organic Chemistry Discussion or Organic Chemistry II</td>
</tr>
<tr>
<td>BIOC 302</td>
<td>Biochemistry II</td>
</tr>
</tbody>
</table>

* Six credit hours of advanced coursework in chemistry

Specialization in Inorganic Chemistry and Inorganic Materials

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 475</td>
<td>Physical Methods in Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 495</td>
<td>Transition Metal Chemistry</td>
</tr>
</tbody>
</table>

* Six credit hours of advanced coursework in chemistry

Specialization in Organic Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 212/214 or CHEM 320</td>
<td>Organic Chemistry II and Organic Chemistry Discussion or Organic Chemistry II</td>
</tr>
<tr>
<td>CHEM 401</td>
<td>Advanced Organic Chemistry</td>
</tr>
</tbody>
</table>

* Six credit hours of advanced coursework in chemistry

Specialization in Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 430</td>
<td>Quantum Chemistry</td>
</tr>
<tr>
<td>CHEM 420</td>
<td>Classical and Statistical Thermodynamics</td>
</tr>
<tr>
<td>CHEM 415 or 450 or 531 or 559</td>
<td>advanced course in physical chemistry</td>
</tr>
</tbody>
</table>

* One course (three credit hours) MATH or PHYS at 400-level or above

* CHEM 121/122/123/124 may substitute for CHEM 151/152/153/154
* MATH 221/222 may substitute for MATH 212
Chemistry BS

SAMPLE DEGREE PLAN
This is only one of many possible ways to fulfill your degree requirements.

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 151</td>
<td>Honors Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 153</td>
<td>Honors Chemistry Lab I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 110</td>
<td>Freshman Chemistry Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Mechanics (with lab)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 103</td>
<td>Mechanics Discussion</td>
<td>0</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 152</td>
<td>Honors Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 154</td>
<td>Honors Chemistry Lab II</td>
<td>1</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Single Variable Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 102</td>
<td>Electricity & Magnetism (with lab)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 104</td>
<td>E & M Discussion</td>
<td>0</td>
</tr>
<tr>
<td>LPAP</td>
<td>Lifetime Physical Activity Elective</td>
<td>1</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Organic Chemistry Discussion</td>
<td>0</td>
</tr>
<tr>
<td>CHEM 220</td>
<td>Undergraduate Chemistry Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 320</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 360</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 365</td>
<td>Organic Chemistry Lab</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 391</td>
<td>Research for Undergraduates</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 301</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 366</td>
<td>Inorganic Chemistry Lab</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research for Undergraduates</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 312</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 330</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 368</td>
<td>Chemical Measurement Lab</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research for Undergraduates</td>
<td>3</td>
</tr>
<tr>
<td>ELECT</td>
<td>Specialization</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 492</td>
<td>Undergraduate Honors Research</td>
<td>5</td>
</tr>
<tr>
<td>ELECT</td>
<td>Specialization</td>
<td>3</td>
</tr>
<tr>
<td>ELECT</td>
<td>Specialization</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 493</td>
<td>Undergraduate Honors Research</td>
<td>5</td>
</tr>
<tr>
<td>ELECT</td>
<td>Specialization</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

33
Chemical Physics BS - Requirements

CHEM 121/122/123/124 General Chemistry I and II and General Chemistry Lab I and II
CHEM 211/213 Organic Chemistry I and Organic Chemistry Discussion
CHEM 215 Organic Chemistry Lab
CHEM 311 Physical Chemistry I
CHEM 312 Physical Chemistry II

PHYS 101/103 or PHYS 111 Mechanics (with lab) and Mechanics Discussion
or Mechanics (with lab)
PHYS 102/104 or PHYS 112 Electricity & Magnetism (with lab) and E&M Discussion
or Electricity and Magnetism (with lab)

PHYS 201 Waves and Optics
PHYS 202 Modern Physics
PHYS 231 Elementary Physics Lab II
PHYS 301 Intermediate Mechanics
PHYS 302 Intermediate Electrodynamics
MATH 101/102 Single Variable Calculus I and II

Three courses from:

PHYS 311 Intro to Quantum Physics I
PHYS 312 or CHEM 430 Intro to Quantum Physics II or Quantum Chemistry
CHEM 360 Inorganic Chemistry
CHEM 415 Chemical Kinetics and Dynamics
CHEM 420 or PHYS 425 Classical and Statistical Thermodynamics
or Statistical and Thermal Physics

Four courses from:

CHEM 365 Organic Chemistry Lab
CHEM 366 Inorganic Chemistry Lab
CHEM 367 Materials Chemistry Lab
CHEM 368 Chemical Measurement Lab
PHYS 331 Junior Physics Lab I
PHYS 332 Junior Physics Lab II
CHEM 491 or PHYS 461/462 Research for Undergraduates (up to 2 hours)
or Independent Research

Two courses (six hours) of MATH or CAAM at the 300-level or above

* CHEM 151/152/153/154 may substitute for CHEM 121/122/123/124
Sample Degree Plan

This is only one of many possible ways to fulfill your degree requirements.

Chemical Physics BS

Fall

<table>
<thead>
<tr>
<th>Freshman</th>
<th>15 credits</th>
<th>Freshman</th>
<th>17 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I</td>
<td>3</td>
<td>CHEM 122</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>General Chemistry Lab I</td>
<td>1</td>
<td>CHEM 124</td>
</tr>
<tr>
<td>CHEM 110</td>
<td>Freshman Chemistry Seminar</td>
<td>1</td>
<td>PHYS 102</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Mechanics (with lab)</td>
<td>4</td>
<td>PHYS 104</td>
</tr>
<tr>
<td>PHYS 103</td>
<td>Mechanics Discussion</td>
<td>0</td>
<td>MATH 102</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>17 credits</th>
<th>Sophomore</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>CHEM 215</td>
</tr>
<tr>
<td>CHEM 213</td>
<td>Organic Chemistry Discussion</td>
<td>0</td>
<td>CHEM 360</td>
</tr>
<tr>
<td>CHEM 220</td>
<td>Undergraduate Chemistry Seminar</td>
<td>1</td>
<td>PHYS 202</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>Waves & Optics</td>
<td>3</td>
<td>MATH 211</td>
</tr>
<tr>
<td>PHYS 231</td>
<td>Elementary Physics Lab</td>
<td>1</td>
<td>DIST</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Multivariable Calculus</td>
<td>3</td>
<td>LPAP</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Junior</th>
<th>18 credits</th>
<th>Junior</th>
<th>18 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 311</td>
<td>Physical Chemistry I</td>
<td>3</td>
<td>CHEM 312</td>
</tr>
<tr>
<td>CHEM 391</td>
<td>Research for Undergraduates</td>
<td>3</td>
<td>CHEM 491</td>
</tr>
<tr>
<td>PHYS 301</td>
<td>Intermediate Mechanics</td>
<td>4</td>
<td>PHYS 302</td>
</tr>
<tr>
<td>PHYS 331</td>
<td>Junior Physics Lab I</td>
<td>2</td>
<td>PHYS 332</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Senior</th>
<th>17 credits</th>
<th>Senior</th>
<th>17 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 430</td>
<td>Quantum Chemistry</td>
<td>3</td>
<td>MATH/CAAM</td>
</tr>
<tr>
<td>CHEM 492</td>
<td>Undergraduate Honors Research</td>
<td>5</td>
<td>CHEM 493</td>
</tr>
<tr>
<td>MATH/CAAM</td>
<td>300+ level Elective</td>
<td>3</td>
<td>CHEM 420</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>
Earth Science

Do you want to climb active volcanoes, sail around Antarctica, explore the world’s oceans, help the global environment, join geophysical expeditions, learn advanced laboratory skills, study the Earth’s deep interior, and gain valuable job experience? Explore these opportunities with a degree from Rice in Earth Science.

The Department of Earth Science offers undergraduate students the opportunity to pursue exciting careers in energy, the environment, government, education, and academia. Our recently revised curriculum teaches skills that prepare students for the challenges of the 21st Century in geology, geophysics, geochemistry, environmental sciences, and more.

The BS major offers five tracks: geology, geochemistry, geophysics, environmental Earth science, or a self-designed track designed by the student and a faculty member (subject to the approval of a department undergraduate advisor). All of the programs of study include experiences with analytical equipment, computer systems, and fieldwork. The BA major provides greater flexibility of course choices.

Degrees Offered

Earth Science BS, BA

Frank Advice

• Each student working towards a BS degree must complete advanced coursework for one track: Geology, Geochemistry, Geophysics, Environmental Earth Science, or a Self-Designed Track. Talk to older students, your professors, and your advisors to choose the track that best suits you.

• If you have math AP credit, consider taking more advanced MATH classes during your freshman year.

• Most Earth Science majors participate in undergraduate research, either through the course ESCI 481 Undergraduate Research or through summer research internships. Many undergraduates also present their own research projects at national and international professional conferences.

• Not required but highly recommended courses: Statistics, Environmental Science
Earth Science BA - Requirements

MATH 101/102 Single Variable Calculus I and II
CHEM 121/123 or 151/153 General Chemistry I and General Chemistry Lab I or Honors Chemistry I and Honors Chemistry Lab I
CHEM 122/124 or 152/154 General Chemistry II and General Chemistry Lab II or Honors Chemistry II and Honors Chemistry Lab II
ESCI 301 Introduction to the Earth
ESCI 321 Earth System Evolution and Cycles
ESCI 322 Earth Chemistry and Materials
ESCI 323 Earth Structure and Deformation
ESCI 324 Earth's Interior
ESCI 334 Geological Techniques

Four additional ESCI courses

Two courses from NSCI or ENGR 200-level or above

Two to four courses (minimum six credit hours) from one of the following groups:

Introductory Biology I and II
- BIOC 201 Introductory Biology I
- EBIO 202 Introductory Biology II

Intermediate Experimental Biosciences and Lab Modules
- BIOC 211 Intermediate Experimental Biosciences
- EBIO 213 Intro Lab in Ecology and Evolutionary Biology

MATH/COMP/CAAM Options
- MATH 211 Differential Equations
- COMP 110/NSCI 230 or CAAM 210 Computation in Natural Science or Introduction to Engineering Computation

Mechanics and Electricity and Magnetics
- PHYS 101/103 or PHYS 125 Mechanics (with lab) and Mechanics with Lab Discussion or General Physics I (with lab)
- PHYS 102/104 or PHYS 126 Electricity & Magnetism (with lab) and E & M Discussion or General Physics II (with lab)
Earth Science BA

FRESHMAN

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 301</td>
<td>4</td>
<td>ESCI 323</td>
<td>4</td>
</tr>
<tr>
<td>MATH 101</td>
<td>3</td>
<td>MATH 102</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>3</td>
<td>CHEM 122</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>1</td>
<td>CHEM 124</td>
<td>1</td>
</tr>
<tr>
<td>FWIS</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>LPAP</td>
<td>1</td>
<td>OPEN</td>
<td>3</td>
</tr>
</tbody>
</table>

SPRING

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 323</td>
<td>4</td>
<td>Earth Structure & Deformation</td>
<td>4</td>
</tr>
<tr>
<td>MATH 102</td>
<td>3</td>
<td>Single Variable Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122</td>
<td>3</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>1</td>
<td>General Chemistry Lab II</td>
<td>1</td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

SOPHOMORE

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 321</td>
<td>4</td>
<td>ESCI 324</td>
<td>4</td>
</tr>
<tr>
<td>ELECT</td>
<td>3</td>
<td>ELECT</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
</tbody>
</table>

JUNIOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 322</td>
<td>4</td>
<td>ESCI 334</td>
<td>3</td>
</tr>
<tr>
<td>ELECTI</td>
<td>3</td>
<td>ELECT</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
</tbody>
</table>

SENIOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI</td>
<td>3</td>
<td>ESCI</td>
<td>3</td>
</tr>
<tr>
<td>NSCI/ENG</td>
<td>3</td>
<td>NSCI/ENG</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
</tbody>
</table>

This is only one of many possible ways to fulfill your degree requirements.
Earth Science BS - Requirements

MATH 101/102 Single Variable Calculus I and II
CHEM 121/122/123/124 General Chemistry I and II and General Chemistry Lab I and II
PHYS 101/103 or PHYS 111 Mechanics (with lab) and Mechanics Discussion
or Mechanics (with lab)
PHYS 102/104 or PHYS 112 Electricity & Magnetism (with lab) and E & M Discussion
or Electricity and Magnetism (with lab)
ESCI 301 Introduction to the Earth
ESCI 321 Earth System Evolution and Cycles
ESCI 322 Earth Chemistry and Materials
ESCI 323 Earth Structure and Deformation
ESCI 324 Earth's Interior
ESCI 334 Geological Techniques

*CHEM 151/152/153/154 may substitute for CHEM 121/122/123/124

Each student must complete the additional courses for one specialization

Geology Specialization

MATH 211 Ordinary Differential Equations & Linear Algebra
ESCI 390 Geology Field Camp (at least 3 hours)
COMP 110 or CAAM 210 Computation in Natural Science or Introduction to Engineering Computation
ESCI 412 or ESCI 430 Advanced Petrology or Principles of Trace-Element and Isotope Geochemistry

Two courses must be completed from Group A and Group B (four courses total):

Group A

ESCI 421 Paleoeceanography
ESCI 427 Sequence Stratigraphy
ESCI 431 Geomorphology
ESCI 435 Mechanics of Sediment Transport
ESCI 504 Siliciclastic Depositional Systems
ESCI 506 Carbonate Depositional Systems
ESCI 552 Marine Geology Systems

Group B

ESCI 410 Optical Mineralogy and Petrography
ESCI 418/CEVE 418 Quantitative Hydrogeology
ESCI 419 Materials Characterization
ESCI 426 Interpretation of Regional 2D Seismic Data
ESCI 429 Magmatic, Volcanic and Hydrothermal Processes
ESCI 442 Exploration Geophysics
ESCI 463 Structure and Evolution of Tectonic Systems
ESCI 464 Global Tectonics
ESCI 467 Geomechanics
Earth Science BS - Requirements

Geochemistry Specialization

- BIOC 201 Introductory Biology
- MATH 211 Ordinary Differential Equations and Linear Algebra
- ESCI 391 Earth Science Field Experience (at least 3 hours)

Four courses from:

- ESCI 340/EBIO 340/ENST 340 Global Biogeochemical Cycles
- ESCI 410 Optical Mineralogy and Petrography
- ESCI 412 Advanced Petrology
- ESCI 419 Materials Characterization
- ESCI 421 Paleoclimatology
- ESCI 425/CHEM 425/ENST 425 Organic Geochemistry
- ESCI 426 Interpretation of Regional 2D Seismic Data
- ESCI 429 Magmatic, Volcanic and Hydrothermal Processes
- ESCI 430 Principles of Trace-Element & Isotope Geochemistry

Two courses from:

- ESCI 300-level courses or above
- BIOC 211 Intermediate Experimental Biosciences
- CAAM 210 Introduction to Engineering Computation
- CEVE 401 Chemistry for Environmental Engineering & Lab Science
- CEVE 434/534 Fate & Transport of Contaminants of the Environment
- CEVE 550 Environmental Organic Chemistry
- CHEM 211/213 Organic Chemistry I & Organic Chemistry Discussion
- CHEM 212/214 Organic Chemistry II & Organic Chemistry Discussion II
- CHEM 310 Physical Chemistry
- CHEM 415 Chemical Kinetics and Dynamics
- CHEM 495 Transition Metal Chemistry
- COMP 110/NSCI 230 Computation Science and Engineering
- EBI O 202 Introductory Biology
- MATH 212 Multivariable Calculus

Geophysics Specialization

- COMP 110/NSCI 230 or Computation in Natural Science or Introduction to
- CAAM 210 Engineering Computation
- ESCI 391 Earth Science Field Experience (at least three hours)
- MATH 211 Ordinary Differential Equations and Linear Algebra
- MATH 212 Multivariable Calculus
- PHYS 201 Waves and Optics
- PHYS 231 Elementary Physics Lab II
Earth Science BS - Requirements

(continued)

Two courses from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 418/CEVE 418</td>
<td>Quantitative Hydrogeology</td>
</tr>
<tr>
<td>ESCI 426</td>
<td>Interpretation of Regional 2D Seismic Data</td>
</tr>
<tr>
<td>ESCI 442</td>
<td>Exploration Geophysics</td>
</tr>
<tr>
<td>ESCI 450/CEVE 450</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>ESCI 452</td>
<td>GIS for Scientists</td>
</tr>
<tr>
<td>ESCI 461</td>
<td>Seismology I</td>
</tr>
<tr>
<td>ESCI 462</td>
<td>Tectonophysics</td>
</tr>
<tr>
<td>ESCI 463</td>
<td>Tectonic Systems</td>
</tr>
<tr>
<td>ESCI 464</td>
<td>Global Tectonics</td>
</tr>
<tr>
<td>ESCI 467</td>
<td>Geomechanics</td>
</tr>
<tr>
<td>ESCI 542</td>
<td>Seismology II</td>
</tr>
<tr>
<td>ESCI 440</td>
<td>Geophysical Data Analysis: Digital Signal Processing</td>
</tr>
<tr>
<td>ESCI 441</td>
<td>Geophysical Data Analysis: Inverse Methods</td>
</tr>
<tr>
<td>ESCI 564</td>
<td>Seismic Reflection Data Processing</td>
</tr>
</tbody>
</table>

Two courses from:

Any course from ESCI course offerings between ESCI 410 and ESCI 475, except for research and special studies
Any course from MATH, CAAM, or PHYS course offerings at the 300-level or above

CHEM 311 Physical Chemistry

Environmental Earth Science Specialization

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>Introductory Biology</td>
</tr>
<tr>
<td>ESCI 391</td>
<td>Earth Science Field Experience (at least 3 hours)</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Ordinary Differential Equations and Linear Algebra</td>
</tr>
<tr>
<td>STAT 280</td>
<td>Elementary Applied Statistics</td>
</tr>
<tr>
<td>COMP 110 or CAAM 210</td>
<td>Computation in Natural Science or Introduction to Engineering Computation</td>
</tr>
</tbody>
</table>

11 hours from the following, including at least two ESCI courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEVE 401</td>
<td>Chemistry for Environmental Engineering & Science Lab</td>
</tr>
<tr>
<td>CEVE 406/ENST 406</td>
<td>Introduction to Environmental Law</td>
</tr>
<tr>
<td>CEVE 412</td>
<td>Hydrology and Water Resources Engineering</td>
</tr>
<tr>
<td>CEVE 434</td>
<td>Fate & Transport of Contaminants in the Environment</td>
</tr>
<tr>
<td>CHEM 211/213</td>
<td>Organic Chemistry and Organic Chemistry Discussion</td>
</tr>
<tr>
<td>CHEM 310</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>EBI 202</td>
<td>Introductory Biology</td>
</tr>
<tr>
<td>ESCI 340/EBIO 340/ENST 340</td>
<td>Global Biogeochemical Cycles</td>
</tr>
<tr>
<td>ESCI 410</td>
<td>Optical Mineralogy and Petrography</td>
</tr>
<tr>
<td>ESCI 418</td>
<td>Quantitative Hydrogeology</td>
</tr>
<tr>
<td>ESCI 419</td>
<td>Materials Characterization</td>
</tr>
</tbody>
</table>
| ESCI 421 | Paleooceanography | (continued)
Earth Science BS - Requirements

(continued)

ESCI 425/CHEM 425/ENST 425 Organic Geochemistry
ESCI 426 Interpretation of Regional 2D Seismic Data
ESCI 429 Magmatic, Volcanic and Hydrothermal Processes
ESCI 431 Geomorphology
ESCI 435 Mechanics of Sediment Transport
ESCI 442 Exploration Geophysics
ESCI 452 GIS for Scientists
ESCI 463 Structure and Evolution of Tectonic Systems
ESCI 467 Geomechanics
ESCI 504 Siliciclastic Depositional Systems
ESCI 506 Carbonate Depositional Systems
ESCI 540 Earth's Atmosphere
ESCI 552 Marine Geology Systems
PHYS 201 Waves and Optics
PHYS 231 Elementary Physics Lab II

Self-Designed Specialization

Interested students are expected to submit a statement of rationale by the beginning of the third year.

Students must complete the following course:

ESCI 391 Earth Science Field Experience (at least 3 hours)

Two courses from:

BIOS 201 Introductory Biology
COMP 110/NSCI 230 Computation in Natural Science
CAAM 210 Introduction to Engineering Computation
CHEM 311/312 Physical Chemistry I and II
MATH 211 Ordinary Differential Equations and Linear Algebra
MATH 212 Multivariable Calculus
PHYS 201 Waves and Optics

Six courses (18 hours) of additional 300-level courses or above targeting a coherent theme and selected with approval of the department undergraduate advisor
Earth Science BS/Geology Specialization

SAMPLE DEGREE PLAN

This is only one of many possible ways to fulfill your degree requirements.

FALL

<table>
<thead>
<tr>
<th>FRESHMAN</th>
<th>15 credits</th>
<th>FRESHMAN</th>
<th>17 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 301</td>
<td>Intro to the Earth</td>
<td>4</td>
<td>ESCI 323</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
<td>3</td>
<td>MATH 102</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I</td>
<td>3</td>
<td>CHEM 122</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>General Chemistry Lab I</td>
<td>1</td>
<td>CHEM 124</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>LPAP</td>
<td>Lifetime Physical Activity Elective</td>
<td>1</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

SOPHOMORE

<table>
<thead>
<tr>
<th>17 credits</th>
<th>17 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 321</td>
<td>Earth System Evolution & Cycles</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Mechanics (with lab)</td>
</tr>
<tr>
<td>PHYS 103</td>
<td>Mechanics Discussion</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

JUNIOR

<table>
<thead>
<tr>
<th>17 credits</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 322</td>
<td>Earth Chemistry & Materials</td>
</tr>
<tr>
<td>ESCI 442</td>
<td>Exploration Geophysics</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

JUNIOR SUMMER

<table>
<thead>
<tr>
<th>3 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 390</td>
</tr>
</tbody>
</table>

SENIOR

<table>
<thead>
<tr>
<th>16 credits</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 463</td>
<td>Tectonic Systems</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>
Environmental Studies

The interdisciplinary Environmental Studies program explores interconnection between humans and the natural environment, drawing courses from Biosciences, Earth Science, Civil Engineering, and across Humanities and Social Sciences. This program is designed to foster the critical thinking required to address the increasing complexities facing our planet and to develop solutions to enhance the environment.

Degrees Offered

- Environmental Science BS, BA
- Environmental Studies Minor

Frank Advice

- The environmental science majors address environmental issues in the context of what we know about Earth, ecology, and society. Students declare a concentration in ecology and evolutionary biology or Earth science, which enhances the depth of study in that field.

- The environmental studies minor provides a cross-disciplinary holistic understanding of the challenges and solutions for creating a sustainable world. Undergraduates from a broad range of academic backgrounds undertake a cohesive program of study offering foundational literacy in the social, cultural, and scientific dimensions of environmental issues.

- No sample degree plans are shown for environmental studies as individual degree plans will vary widely based on the student’s focus within the major. Consult the Major Advisors to create a personalized degree plan that best suits your needs.
Environmental Science BA - Requirements

- BIOC 201: Introductory Biology
- EBIO 202: Introductory Biology II
- CHEM 121/122/123/124*: General Chemistry I and II and General Chemistry Lab I and II
- MATH 101/102*: Single Variable Calculus I and II
- STAT 280 or STAT 305: Elementary and Applied Statistics or Introduction to Statistics for the Biosciences

- ENST 100: Environmental Culture and Society
- ESCI 107 or ESCI 109 or ESCI 201: Oceans and Global Change or Oceanography or Science Behind Global Warming
- EBIO 213: Introduction to Experimental Ecology and Evolutionary Biology
- EBlO 325: Ecology
- ESCI 301: Introduction to the Earth
- ENST 4xx: SEMINAR: Topics in Environmental Science

One to two courses (2-3 credit hours) of field experience courses from the list in the 2016 General Announcements

One advanced Social Sciences elective from the list in the 2016 General Announcements

One advanced Humanities and Architecture elective from the list in the 2016 General Announcements

One advanced Natural Science and Engineering elective from the list in the 2016 General Announcements

Students must complete the requirements for one major concentration:

Major Concentration: Ecology and Evolutionary Biology

Two courses from:
- EBIO 270: Ecosystem Management
- EBIO 323/ENST 323: Conservation Biology
- EBIO 372: Coral Reef Ecosystems

One course from:
- EBIO 270: Ecosystem Management
- EBIO 321: Animal Behavior
- EBIO 323/ENST 323: Conservation Biology
- EBIO 326: Insect Biology
- EBIO 331/BIOC 331: Biology of Infectious Disease
- EBIO 334/BIOC 334: Evolution
- EBIO 336: Plant Diversity
- EBIO 338: Design and Analysis of Biological Experiments
- EBIO 365: Introductory Phycology
- EBIO 366: Applied Phycology
- EBIO 372: Coral Reef Ecosystems
Environmental Science BA - Requirements

Major Concentration: Earth Science

Two courses from:

- ESCI 321 Earth Systems and Cycles
- ESCI 323 Earth Structure and Deformation
- ESCI 340/EBIO 340/ENST 340 Global Biogeochemical Cycles

One course from:

- ESCI 321 Earth Systems and Cycles
- ESCI 322 Earth Chemistry and Materials
- ESCI 323 Earth Structure and Deformation
- ESCI 340/EBIO 340/ENST 340 Global Biogeochemical Cycles
- ESCI 380/FOTO 390 Visualizing Nature (if not selected for field course)
- ESCI 418/CEVE 418 Quantitative Hydrogeology
- ESCI 421 Paleooceanography
- ESCI 425/CHEM 425/ENST 425 Organic Geochemistry
- ESCI 430 Principles of Trace-Element and Isotope Geochemistry
- ESCI 431 Geomorphology
- ESCI 435 Mechanics of Sediment Transport
- ESCI 452/CEVE 453 Geographic Information Science
- ESCI 467 Geomechanics

* CHEM 151/152/153/154 may substitute for CHEM 121/122/123/124
* MATH 111/112 may substitute for MATH 101/102
Environmental Science BS - Requirements

BIOC 201 Introductory Biology
EBIO 202 Introductory Biology II
CHEM 121/122/123/124* General Chemistry I and II and General Chemistry Lab I and II
MATH 101/102* Single Variable Calculus I and II
STAT 280 or STAT 305 Elementary and Applied Statistics or Introduction to Statistics for the Biosciences
PHYS 101/103* Mechanics (with lab) and Mechanics Discussion
PHYS 102/104* Electricity and Magnetism (with lab) and E & M Discussion
ENST 100 Environmental Culture and Society
ESCI 107 or ESCI 109 or ESCI 201 Oceans and Global Change or Oceanography or Science Behind Global Warming
EBIO 213 Introduction to Experimental Ecology and Evolutionary Biology
EBIO 325 Ecology
ESCI 301 Introduction to the Earth
ENST 4xx SEMINAR: Topics in Environmental Science

One to two courses (2-3 credit hours) of field experience courses from the list in the 2016 General Announcements

One advanced Social Sciences elective from the list in the 2016 General Announcements

One advanced Humanities and Architecture elective from the list in the 2016 General Announcements

One advanced Natural Science and Engineering elective from the list in the 2016 General Announcements

One course (at least three credit hours) from:

ESCI 390 Geologic Field Camp
ESCI 391 Earth Science Field Experience
EBIO 403 or 404 Undergraduate Honors Research
ESCI 481 Undergraduate Research in Earth Science

Students must complete the requirements for one major concentration:

Major Concentration: Ecology and Evolutionary Biology

Two courses from:

EBIO 270 Ecosystem Management
EBIO 323/ENST 323 Conservation Biology
EBIO 372 Coral Reef Ecosystems (continued)
Environmental Science BS - Requirements

Ecology and Evolutionary Biology (continued)

One course from:

- EBIO 270 Ecosystem Management
- EBIO 321 Animal Behavior
- EBIO 323/ENST 323 Conservation Biology
- EBIO 326 Insect Biology
- EBIO 331/BIOC 331 Biology of Infectious Disease
- EBIO 334/BIOC 334 Evolution
- EBIO 336 Plant Diversity
- EBIO 338 Design and Analysis of Biological Experiments
- EBIO 365 Intro Phycology
- EBIO 366 Applied Phycology
- EBIO 372 Coral Reef Ecosystems
- ESCI 340/EBIO340/ENST 340 Global Biogeochemical Cycles

Major Concentration: Earth Science

Two courses from:

- ESCI 321 Earth Systems and Cycles
- ESCI 323 Earth Structure and Deformation
- ESCI 340/EBIO 340/ENST 340 Global Biogeochemical Cycles

One course from:

- ESCI 321 Earth Systems and Cycles
- ESCI 322 Earth Chemistry and Materials
- ESCI 323 Earth Structure and Deformation
- ESCI 340/EBIO 340/ENST 340 Global Biogeochemical Cycles
- ESCI 380/FOTO 390 Visualizing Nature (if not selected for field course)
- ESCI 418/CEVE 418 Quantitative Hydrogeology
- ESCI 421 Paleoeceanography
- ESCI 425/CHEM 425/ENST 425 Organic Geochemistry
- ESCI 430 Principles of Trace-Element and Isotope Geochemistry
- ESCI 431 Geomorphology
- ESCI 435 Mechanics of Sediment Transport
- ESCI 452/CEVE 453 Geographic Information Science
- ESCI 467 Geomechanics

* CHEM 151/152/153/154 may substitute for CHEM 121/122/123/124
 MATH 111/112 may substitute for MATH 101/102
 PHYS 111/112 or PHYS 125/126 may substitute for PHYS 101/102/103/104
Environmental Studies Minor - Requirements

ENST 100 Environment, Culture and Society

One course from:
EBIO 124 Introduction to Ecology and Evolutionary Biology
ESCI 101 The Earth
ESCI 107 Oceans and Global Change
ESCI 109 Oceanography
ESCI 201 The Science Behind Earth Global Warming and Climate Change

Two Architecture, Humanities, and Social Sciences courses from the list in the 2016 General Announcements

Two Engineering and Natural Science courses from the list in the 2016 General Announcements
Global Health Technologies

The Rice 360° Institute for Global Health collaborates with multiple departments to offer students a minor in Global Health Technologies. The minor is open to Rice undergraduate students from all disciplines. In the capstone course, multidisciplinary teams of undergraduate students work together to design and implement solutions to existing global health challenges in the developing world. Students benefit from receiving guidance and mentorship from Rice faculty and graduate students as well as from the Texas Medical Center, partner organizations in developing countries, and clinicians to design low-cost, effective health technologies.

Degree Offered

Global Health Technologies Minor

Frank Advice

• The minor in global health technologies (GLHT) is a unique, multidisciplinary program that educates and trains students to reach beyond traditional disciplinary and geographic boundaries to understand, address, and solve global health disparities.

• The GLHT minor aims to create future leaders who can develop effective solutions to significant world health challenges. Many students pursuing the GLHT minor enter careers in medicine, public health, public policy, and international development.

• You are not required to start the GLHT minor in your freshman year; it can be started as late as the Fall semester of your junior year. It is possible for students to receive credit for GLHT minor courses that also fulfill a requirement within their major.
Global Health Technologies Minor - Requirements

GLHT 201 Bioengineering for Global Health Environments
GLHT 360 Appropriate Design for Global Health

One course from:
- PSYC 370 Introduction to Human Factors and Ergonomics
- SOCI 345 Medical Sociology
- SOCI 381 Research Methods
- ANTH 381 Medical Anthropology
- GLHT 392 Needs Finding and Development in Bioengineering
- GLHT 464/BUSI 464 Social Entrepreneurship

GLHT 451/452 Global Health Design Challenges I and II

Three credit hours in science/engineering elective courses from the list in the 2016 General Announcements

Three credit hours in humanities/social science elective courses from the list in the 2016 General Announcements

Note: The sequence indicated is the required sequence, as prerequisites do apply.
Kinesiology

The Kinesiology department is home to two distinct programs (Health Sciences and Sports Medicine) and is one of the first of its kind in the nation to allow students to concentrate their studies in one of these specific sub-disciplines. A flexible curriculum permits undergraduate majors to tailor their coursework to their particular postgraduate needs and also permits them to study abroad, pursue internships, and conduct undergraduate research. With a median class size of 19, students find an active, close-knit community of scholars, teachers, and mentors who take a personal interest in every student major. The Kinesiology programs have one of the largest number of academic majors in the School of Natural Sciences and are among the largest choice of student majors at Rice.

The Health Sciences program provides students with a fundamental background in health promotion and disease prevention. Viewing health from the broader community level, students acquire the knowledge and skills for careers in public health related positions.

The Sports Medicine program provides a strong basic science foundation and then interfaces this foundation with application to the human body. It is the only academic specialization on campus that provides detailed instruction in human anatomy and human physiology in addition to nutrition, biomechanics, motor learning and exercise physiology among other topics.

Degree Offered

Kinesiology BA

Frank Advice

• Students choosing to major in Kinesiology must choose a concentration in either Health Sciences or Sports Medicine when declaring their major. Consult with the department advisor for your program as well as the Health Professions Advising service to ensure that you are choosing the correct pre-requisites as you are planning your degree.

• Be mindful when degree planning of courses that may only be offered once every other year.
Kinesiology

• If you are a Sports Medicine major, take KINE 300, Human Anatomy, as soon as possible. Most KINE classes refer to some elements of human anatomy.

• Qualified students are encouraged to participate in an independent study. This independent study allows integral involvement in basic or applied research directed by a faculty advisor. Opportunities are available with a variety of institutions in the Texas Medical Center.

• Students are encouraged to pursue any of a variety of highly competitive internships, which provide practical experience tailored to your interests. The close proximity of Rice to the Texas Medical Center allows you to find experience in a medical setting for potentially every medical specialty in practice.

• Not required but highly recommended: Take KINE 120, Scientific Foundations of Kinesiology, during the summer before freshman year or the spring of freshman year to get an overview of Kinesiology.
Kinesiology BA/Health Sciences - Requirements

HEAL 119 Introduction to Health and Wellness
HEAL 222 Principles of Public and Community Health
HEAL 313 Foundations of Health Promotion and Education
HEAL 407 Epidemiology
HEAL 422 Theories and Models of Health Behavior
HEAL 460 Planning and Evaluation of Health Promotion and Education
KINE 319 Statistics for the Health Professional

Eight courses (24 hours) from:

ANTH 210 Anthropology of Death
ANTH 381 Medical Anthropology
ANTH 386 Medical Anthropology of Food and Health
ANTH 388 The Life Cycle: A Biocultural View
ANTH 446 Advanced Biomedical Anthropology
BIOC 201 Introductory Biology
BIOC 122 Fundamental Concepts in Biology
BIOE 360 Appropriate Design for Global Health
ENGL 272 Literature and Medicine
ENGL 273 Medicine and Media
ENST 315 Environmental Health
GLHT 201 Bioengineering and World Health
HEAL 103 Nutrition
HEAL 132 Medical Terminology
HEAL 208 Chemical Alterations of Behavior
HEAL 212 Consumer Health and the Media
HEAL 306 Human Sexuality
HEAL 350 Understanding Cancer
HEAL 360 Violence in America: A Public Health Perspective
HEAL 379 Internship in Health Sciences
HEAL 380 Disparities in Health in America
HEAL 485 Seminar on International Health Problems
HEAL 495/496 Independent Studies in Health Sciences
HEAL 498 Special Topics in Health Sciences
KINE 300 Human Anatomy
KINE 301 Human Physiology
KINE 326 Exercise Epidemiology
KINE 440 Research Methods
PHIL 314 The Philosophy of Medicine
PHIL 315 Ethics, Medicine and Public Policy
PHIL 336 Topics in Medical Ethics
POLI 329 Health Policy
PSYC 345 Health Psychology
SOCI 313 Demography
SOCI 345 Medical Sociology
SOCI 355 Sociology of Drugs and Alcohol
SOCI 465 Gender and Health
SOSC 330 Health Care Reform in the 50 States
SOSC 398 Pharmaceutical Politics and Policy
SOSC 430 The Shaping of Health Policy
Kinesiology BA/Health Sciences

Sample Degree Plan

This is only one of many possible ways to fulfill your degree requirements.

Fall

<table>
<thead>
<tr>
<th>Freshman</th>
<th>15 credits</th>
<th>Freshman</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAL 119</td>
<td>Intro to Health & Wellness</td>
<td>3</td>
<td>ELECT</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPAP</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>15 credits</th>
<th>Sophomore</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAL 222</td>
<td>Principles of Public & Community Health</td>
<td>3</td>
<td>HEAL 313</td>
</tr>
<tr>
<td>KINE 319</td>
<td>Statistics for the Health Professional</td>
<td>3</td>
<td>ELECT</td>
</tr>
<tr>
<td>ELECT</td>
<td>Health Sciences Elective</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Junior</th>
<th>15 credits</th>
<th>Junior</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAL 407</td>
<td>Epidemiology</td>
<td>3</td>
<td>HEAL 422</td>
</tr>
<tr>
<td>ELECT</td>
<td>Health Sciences Elective</td>
<td>3</td>
<td>ELECT</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>ELECT</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Senior</th>
<th>15 credits</th>
<th>Senior</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAL 460</td>
<td>Planning & Evaluation of Health Promotion & Education</td>
<td>3</td>
<td>ELECT</td>
</tr>
<tr>
<td>ELECT</td>
<td>Health Sciences Elective</td>
<td>3</td>
<td>DIST</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
<td>OPEN</td>
</tr>
</tbody>
</table>
Kinesiology BA/Sports Medicine - Requirements

HEAL 103 Nutrition
KINE 300 Human Anatomy
KINE 301 Human Physiology
KINE 302 Biomechanics
KINE 310 Psychological Aspects of Sport and Exercise
KINE 311 Motor Learning
KINE 319 Statistics for the Health Professional
KINE 321 Exercise Physiology
KINE 323 Exercise Physiology Laboratory
KINE 325 Motor Learning Laboratory
KINE 440 Research Methods

Five courses (15 hours) from:
- BIOC 201 Introductory Biology
- BIOC 211 Introductory Experimental Biosciences
- BIOC 301 Biochemistry I
- BIOC 302 Biochemistry II
- BIOC 311 Advanced Experimental Biosciences
- BIOC 313 Introductory Synthetic Biology
- BIOC 372 Immunology
- CHEM 121/123 General Chemistry I and General Chemistry Lab I
- CHEM 122/124 General Chemistry II and General Chemistry Lab II
- CHEM 151/153 Honors Chemistry I and Honors Chemistry Lab I
- CHEM 152/154 Honors Chemistry II and Honors Chemistry Lab II
- E BIO 202 Introductory Biology II
- KINE 120 Scientific Foundations of Kinesiology
- HEAL 132 Medical Terminology
- KINE 351 Human Anatomy Lab
- KINE 326 Exercise Epidemiology
- KINE 375 Sports Medicine Internship
- KINE 403 Sports Nutrition
- HEAL 407 Epidemiology
- KINE 410 Case Studies in Human Performance
- KINE 412 Motor Control
- KINE 421 Adv. Topics in Exercise Phys. & Preventative Medicine
- KINE 441 Muscle Physiology and Plasticity
- KINE 495/496 Independent Study in Sports Medicine
- KINE 498 Special Topics in Sports Medicine
- KINE 499 Teaching Practicum in Sports Medicine
- PHYS 101/PHYS 103 Mechanics (with lab) and Mechanics Discussion
- PHYS 102/PHYS 104 Electricity & Magnetism (with lab) and E & M Discussion
- PHYS 125 General Physics I (with lab)
- PHYS 126 General Physics II (with lab)
- PSYC 202 Introduction to Social Psychology
- PSYC 203 Introduction to Cognitive Psychology
- PSYC 321 Developmental Psychology
Kinesiology BA/Sports Medicine

FALL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAL 103</td>
<td>Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>ELECT</td>
<td>Kinesiology Elective</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>LPAP</td>
<td>Lifetime Physical Activity Elective</td>
<td>1</td>
</tr>
</tbody>
</table>

SPRING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 120</td>
<td>Foundations of Kinesiology (Elective)</td>
<td>3</td>
</tr>
<tr>
<td>ELECT</td>
<td>Kinesiology Elective</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
</tbody>
</table>

SOPHOMORE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 319</td>
<td>Statistics for the Health Professional</td>
<td>3</td>
</tr>
<tr>
<td>ELECT</td>
<td>Kinesiology Elective</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

JUNIOR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 311</td>
<td>Motor Learning</td>
<td>3</td>
</tr>
<tr>
<td>KINE 325</td>
<td>Motor Learning Lab</td>
<td>1</td>
</tr>
<tr>
<td>KINE 301</td>
<td>Human Physiology</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

SENIOR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 302</td>
<td>Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

This is only one of many possible ways to fulfill your degree requirements.
Mathematics is the study of structure that provides a language and tools for interpreting our world. The Mathematics Department offers training in the traditional areas of pure mathematics: analysis, algebra, geometry, and topology, as well as courses in combinatorics, computational algebraic geometry, and mathematical biology. Rice’s Computational and Applied Mathematics (CAAM) and Statistics (STAT) departments offer an array of other mathematical courses. Undergraduates seeking a math degree are also trained in problem solving, analytical thinking, and the logical and precise communication of their ideas. In the marketplace, law schools, and business schools, it is precisely these skills that make math majors a valuable commodity.

The BS program prepares students for Ph.D. programs in mathematics and related disciplines. It requires courses from each of the subfields of mathematics.

The BA program is extremely flexible; it allows students to design their own programs in conjunction with their advisors. This also makes Math a popular double major. Today’s budding scientist, engineer, computer scientist, economist, or social scientist needs much more mathematical training than did previous generations. The ease and flexibility of the double major in math allows students to get degree credit for their work.

Degrees Offered

- Mathematics: BS, BA, Minor

Frank Advice

- The Math department provides detailed information about choosing the proper math course for your first semester at Rice. Visit their website, looking under Academics > Undergraduate > Advising and Transfer Credit for their advice on class selection for first-year students.
Mathematics

• If you have AP credit for MATH 101-102, have a strong math background, and are interested in a major with a substantial math component, consider taking Honors Calculus 221-222 and MATH 354 Honors Linear Algebra in your first year.

• MATH 499 offers a non-lecture undergraduate research experience. You should also consider Research Experiences for Undergraduates and other summer research programs if you are thinking of applying to graduate school in Math. www.ams.org/programs/students/students

• Not required but highly recommended courses:
 ◦ MATH 221 – Honors Calculus III
 ◦ MATH 222 – Honors Calculus IV
 ◦ MATH 354 – Honors Linear Algebra
 ◦ MATH 356 – Abstract Algebra I
 ◦ MATH 321 – Introduction to Analysis I
Mathematics BA - Requirements

MATH 101 Single Variable Calculus I
MATH 102 Single Variable Calculus II

MATH 211 and 212 Ordinary Differential Equations and Linear Algebra and
 or
 MATH 221 and 222 Multivariable Calculus or
 Honors Calculus III and IV

Eight courses (24 hours) of MATH courses at the 300-level or above

No sample degree plan is shown for the Math BA as individual degree plans will vary widely based on your background and interests. Consult one of the Major Advisors to create a personalized degree plan that best suits your needs.
Mathematics BS - Requirements

MATH 101 Single Variable Calculus I
MATH 102 Single Variable Calculus II

One course from:
- MATH 211 Ordinary Differential Equations and Linear Algebra
- MATH 381 Intro to Partial Differential Equations
- MATH 423/CAAM 423 Partial Differential Equations I

One to two courses from:
- MATH 212 Multivariable Calculus
- MATH 221 and 222 Honors Calculus III and IV

One course from:
- MATH 221 Honors Calculus III
- MATH 354 Honors Linear Algebra
- MATH 355 Linear Algebra

Two courses from:
- MATH 321 Intro to Analysis I
- MATH 322 Intro to Analysis II
- MATH 425 Integration Theory

MATH 356 Abstract Algebra I
MATH 463 Abstract Algebra II

One course from:
- MATH 370 Calculus on Manifolds
- MATH 401 Differential Geometry
- MATH 402 Differential Geometry

One course from:
- MATH 382 Complex Analysis
- MATH 427 Complex Analysis

One course from:
- MATH 443 General Topology
- MATH 444 Geometric Topology
- MATH 445 Algebraic Topology

A total of at least 33 hours of MATH course offerings at the 300-level or above is required
Mathematics BS

This sample plan assumes AP credit.

FALL 15 credits

<table>
<thead>
<tr>
<th></th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Honors Calculus III</td>
</tr>
<tr>
<td>MATH 354</td>
<td>Honors Linear Algebra</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

SPRING 16 credits

<table>
<thead>
<tr>
<th></th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 222</td>
<td>Honors Calculus IV</td>
</tr>
<tr>
<td>MATH 302 or 304</td>
<td>Elements of Analysis or Elements of Knot Theory</td>
</tr>
<tr>
<td>LPAP</td>
<td>Lifetime Physical Activity Elective</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

SOPHOMORE 15 credits

<table>
<thead>
<tr>
<th></th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 331</td>
<td>Honors Analysis</td>
</tr>
<tr>
<td>MATH 365</td>
<td>Number Theory</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

SOPHOMORE 15 credits

<table>
<thead>
<tr>
<th></th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 322</td>
<td>Intro to Analysis II</td>
</tr>
<tr>
<td>MATH 356</td>
<td>Abstract Algebra I</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

JUNIOR 15 credits

<table>
<thead>
<tr>
<th></th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 423</td>
<td>Partial Differential Equations I</td>
</tr>
<tr>
<td>MATH 463</td>
<td>Abstract Algebra II</td>
</tr>
<tr>
<td>MATH 368</td>
<td>Topics in Combinatorics</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

JUNIOR 15 credits

<table>
<thead>
<tr>
<th></th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 370</td>
<td>Calculus on Manifolds</td>
</tr>
<tr>
<td>MATH 443</td>
<td>General Topology</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

SENIOR 15 credits

<table>
<thead>
<tr>
<th></th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 401</td>
<td>Differential Geometry</td>
</tr>
<tr>
<td>MATH 425</td>
<td>Integration Theory</td>
</tr>
<tr>
<td>MATH 444</td>
<td>Geometric Topology</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

SENIOR 15 credits

<table>
<thead>
<tr>
<th></th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 427</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MATH 499</td>
<td>Mathematical Sciences Vigre Seminar</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 444</td>
<td>Geometric Topology</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 444</td>
<td>Geometric Topology</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
</tr>
</tbody>
</table>

This is only one of many possible ways to fulfill your degree requirements.
Mathematics Minor - Requirements

One course from:
 MATH 302 Elements of Analysis
 MATH 321 Introduction to Analysis I
 MATH 381 Introduction to Partial Differential Equations
 MATH 382 Complex Analysis

One course from:
 MATH 356 Abstract Algebra
 MATH 365 Number Theory
 MATH 368 Topics in Combinatorics

One course from:
 MATH 221 Honors Calculus III
 MATH 354 Honors Linear Algebra
 MATH 355 Linear Algebra

Three additional courses (nine hours) from MATH course offerings
Neuroscience is the study of the brain and nervous system: how it develops, how it works, and what happens when it doesn’t work properly. Neuroscience is a multidisciplinary field that encompasses most areas of modern science, from genetics and biology, to mathematics and engineering, to social and physical sciences, to medicine. The goal of neuroscience is to understand the brain, the most complex organ ever studied in the known universe and to use that information to enrich humankind and to treat and cure brain disorders.

The neuroscience minor is administered by the Department of Biosciences and involves participation in core and elective courses at Rice, Baylor College of Medicine, and the University of Texas Health Sciences Center as well as research in active faculty laboratories throughout the Texas Medical Center.

Degrees Offered
- Neuroscience Minor

Frank Advice
- Each student undertaking a minor in neuroscience chooses one of two unique tracks. The Humanities and Social Sciences track represents cognitive and behavioral approaches to neuroscience, while the Natural Sciences and Engineering track represents genetics, cellular/molecular, bioengineering, computation, and systems-level investigations.
- There is one required core course for the minor (NEUR 380) and two elective core courses dependent on the chosen track (NEUR 362 and NEUR 385). All three courses are offered in the Spring and any of them are an appropriate first course to choose as an introduction to the neuroscience minor.
- NEUR 485 gives credit for research. One 3 credit course can count toward the minor, but you can repeat the course as often as you wish. It is fine to do research in different labs, but if you find a lab you like, stick with it so you may be able to accomplish a project and have your name on a scientific journal article.
Neuroscience Minor - Requirements

NEUR 380/PSYC 380/BIOC 380 Fundamental Neuroscience Systems

Each student must also complete the requirements for one track.

Humanities and Social Sciences Track
NEUR 362/PSYC 362 Cognitive Neuroscience: Exploring the Living Brain

Three courses from the Humanities and Social Science electives listed in the 2016 General Announcements

One course from the Natural Sciences and Engineering electives listed in the 2016 General Announcements

Natural Sciences and Engineering Track
NEUR 385/BIOC 385 Fundamentals of Cellular and Molecular Neuroscience

Three courses from the Natural Sciences and Engineering electives listed in the 2016 General Announcements

One course from the Humanities and Social Science electives listed in the 2016 General Announcements
Physics and Astronomy

Students in the Department of Physics and Astronomy will acquire and demonstrate a solid foundation of knowledge in physics and/or astronomy and deeper knowledge of subdivisions of the field related to their interests. They will build the theoretical, computational, and laboratory skills necessary to succeed in graduate school or in the workplace and become leaders in their chosen discipline. Students will develop the ability to identify, formulate, and solve challenging scientific and technical problems as encountered in physics and astronomy. They will acquire basic skills in reading the scientific literature and learn how to communicate scientific results orally and in writing with scientists and the general public.

The BA degrees in physics and astronomy provide a broad liberal education with a concentration in physical science, while allowing time to pursue other interests. Graduates typically seek employment in a range of professional fields or in secondary teaching.

The BS degrees in physics and astrophysics are intended to provide intensive pre-professional training. Options for specialized study include applied physics, biological physics, and computational physics. Most graduates continue in graduate study or find immediate employment in a technical field.

The Chemical Physics degree is jointly offered by the Department of Physics and Astronomy and the Department of Chemistry. It is designed for students with a strong aptitude in both chemistry and physics. Students take upper-level courses in both chemistry and physics, focusing on the applications of physics to chemical systems. See the Chemistry Department section for degree requirements and a sample degree plan.

Degrees Offered

- Physics: BS, BA, minor
- Astronomy: BA
- Astrophysics: BS
- Chemical Physics: BS
Frank Advice

- Talk to the PHYS 111 instructor about AP physics. It is usually better to take PHYS 111/112 rather than jumping straight into PHYS 201. If you are unsure what to do, speak with the PHYS 111 instructor.

- The BA degree, particularly, can be solid preparation for medical school, law school, or teaching, but you will need additional course work specific to those areas.

- A senior research project and thesis are required for the BS degrees. Prior to that, there are summer research experiences available with faculty in the department and at many other universities and national labs. Announcements are distributed to majors via email regularly.

- Not required but highly recommended: You should have some exposure to computer programming and numerical mathematics, at least at the level of CAAM 210.
Physics BA - Requirements

PHYS 101/103 or 111 Mechanics (with lab) and Mechanics Discussion or Mechanics (with lab)
PHYS 102/104 or 112 Electricity and Magnetism (with lab) and E & M Discussion or Electricity and Magnetism (with lab)
PHYS 201 Waves and Optics
PHYS 202 Modern Physics
PHYS 231 Elementary Physics Laboratory
PHYS 301 Intermediate Mechanics
PHYS 302 Intermediate Electrodynamics
PHYS 311 Introduction to Quantum Physics I
PHYS 331 Junior Physics Laboratory I
PHYS 425 Statistical and Thermal Physics
One 400-level PHYS or ASTR course (three hours)

MATH 101/102 Single Variable Calculus I and II
MATH 211* Ordinary Differential Equations and Linear Algebra
MATH 212* Multivariable Calculus

One course from:
NSCI 230/COMP110 Computation in Science and Engineering
CAAM 210 Introduction to Engineering Computation
One MATH or CAAM course at 300-level or above

* MATH 221/222 may substitute for MATH 211/212
Physics BA

SAMPLE DEGREE PLAN

This is only one of many possible ways to fulfill your degree requirements.

<table>
<thead>
<tr>
<th>FALL</th>
<th>14 credits</th>
<th>SPRING</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 101</td>
<td>Mechanics (with lab) 4</td>
<td>PHYS 102</td>
<td>Electricity & Magnetism (with lab) 4</td>
</tr>
<tr>
<td>PHYS 103</td>
<td>Mechanics Discussion 0</td>
<td>PHYS 104</td>
<td>E & M Discussion 0</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I 3</td>
<td>MATH 102</td>
<td>Single Variable Calculus II 3</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar 3</td>
<td>DIST</td>
<td>Distribution Course 3</td>
</tr>
<tr>
<td>LPAP</td>
<td>Lifetime Physical Activity Elective 1</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective 3</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE</th>
<th>16 credits</th>
<th>SOPHOMORE</th>
<th>14 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 201</td>
<td>Waves & Optics 3</td>
<td>PHYS 202</td>
<td>Modern Physics 3</td>
</tr>
<tr>
<td>PHYS 231</td>
<td>Elementary Physics Lab 1</td>
<td>PHYS 331</td>
<td>Junior Physics Lab I 2</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Multivariable Calculus 3</td>
<td>MATH 211</td>
<td>Differential Equations 3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course 3</td>
<td>DIST</td>
<td>Distribution Course 3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective 3</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective 3</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR</th>
<th>16 credits</th>
<th>JUNIOR</th>
<th>16 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 301</td>
<td>Intermediate Mechanics 4</td>
<td>PHYS 302</td>
<td>Intermediate Electrodynamics 4</td>
</tr>
<tr>
<td>PHYS 311</td>
<td>Intro to Quantum Physics I 3</td>
<td>CAAM 210</td>
<td>Intro to Engineering Computation 3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course 3</td>
<td>DIST</td>
<td>Distribution Course 3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective 3</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective 3</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR</th>
<th>15 credits</th>
<th>SENIOR</th>
<th>15 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 425</td>
<td>Statistical & Thermal Physics 3</td>
<td>PHYS 4xx</td>
<td>400-level Lecture 3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course 3</td>
<td>DIST</td>
<td>Distribution Course 3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective 3</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective 3</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective 3</td>
<td>OPEN</td>
<td>Open Elective 3</td>
</tr>
</tbody>
</table>
PHYSICS & ASTRONOMY

Physics BS - Requirements

PHYS 101/103 or 111 Mechanics (with lab) and Mechanics Discussion or Mechanics (with lab)
PHYS 102/104 or 112 Electricity and Magnetism (with lab) and E & M Discussion or Electricity and Magnetism (with lab)
PHYS 201 Waves and Optics
PHYS 202 Modern Physics
PHYS 231 Elementary Physics Laboratory
PHYS 301 Intermediate Mechanics
PHYS 311 Introduction to Quantum Physics I
PHYS 425 Statistical and Thermal Physics
PHYS 491/493 Undergraduate Research and Undergraduate Research Seminar
PHYS 492/494 Undergraduate Research and Undergraduate Research Seminar
MATH 101/102 Single Variable Calculus I and II
MATH 211 or 221 Honors Calculus III

Each student must complete the additional courses for one major concentration.

Major Concentration: General Physics

PHYS 302 Intermediate Electrodynamics
PHYS 312 Introduction to Quantum Physics II
PHYS 331 and 332 Junior Physics Laboratory I and II
PHYS 411 Introduction to Nuclear and Particle Physics
PHYS 412 Solid State Physics

Two courses from either the MATH or CAAM course groups:

MATH 381 and 382 Introduction to Partial Differential Equations and Complex Analysis
CAAM 335 and 336 Matrix Analysis and Differential Equations in Science and Engineering
CHEM 121/122/123/124 General Chemistry I and II and General Chemistry Lab I and II

Major Concentration: Applied Physics

PHYS 302 Intermediate Electrodynamics or ELEC 306 Applied Electromagnetics
PHYS 312 Introduction to Quantum Physics II or ELEC 361 Quantum Mechanics for Engineers

Two courses from:

- PHYS 331 Junior Physics Lab I
- PHYS 332 Junior Physics Lab II
- ELEC 364 Photonics Measurements

PHYS 412 Solid State Physics (or approved substitute in applied physics)
ELEC 242 Fundamentals of Electrical Engineering II and ELEC 244 Fundamentals of Electrical Engineering II Lab
or ELEC 243 Electronic Measurement Systems
ELEC 305 Introduction to Physical Electronics
MATH 381 Introduction to Partial Differential Equations or CAAM 336 Differential Equations in Science and Engineering
CHEM 121/122/123/124 General Chemistry I and II and General Chemistry Lab I and II

70
Physics BS - Requirements

Major Concentration: Biological Physics

PHYS 302 Intermediate Electrodynamics
PHYS 312 Introduction to Quantum Physics II
PHYS 355 Introduction to Biological Physics
BIOC 201 Introductory Biology
BIOC 211 Intermediate Experimental Biosciences
BIOC 301 or 341 Biochemistry I or Cell Biology
CHEM 121/122/123/124* General Chemistry I & II and General Chemistry Lab I & II
CHEM 211/213 Organic Chemistry and Organic Chemistry Discussion
MATH 381 or CAAM 336 Introduction to Partial Differential Equations or
Differential Equations in Science and Engineering

Major Concentration: Computational Physics

PHYS 302 Intermediate Electrodynamics
PHYS 312 Introduction to Quantum Physics II
PHYS 416 Computational Physics
CAAM 335 Matrix Analysis
CAAM 336 Differential Equations in Science and Engineering
CAAM 210 Introduction to Engineering Computation
CAAM 453 Numerical Analysis I
CAAM 519 Computational Science I

One course from:
CAAM 435 Dynamical Systems
CAAM 454 Numerical Analysis II
CAAM 520 Computational Science II
CAAM 536 Numerical Methods for Partial Differential Equations

CHEM 121/123 General Chemistry I and General Chemistry Lab I

* CHEM 151/153 may substitute for CHEM 121/123
CHEM 152/154 may substitute for CHEM 122/124
PHYSICS & ASTRONOMY

Physics BS / Major Concentration: General Physics

FALL

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 101</td>
<td>4</td>
<td>PHYS 102</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 103</td>
<td>0</td>
<td>PHYS 104</td>
<td>0</td>
</tr>
<tr>
<td>MATH 101</td>
<td>3</td>
<td>MATH 102</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>3</td>
<td>CHEM 122</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>1</td>
<td>CHEM 124</td>
<td>1</td>
</tr>
<tr>
<td>FWIS</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
</tbody>
</table>

SPRING

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 102</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 104</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 102</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 122</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 124</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 201</td>
<td>3</td>
<td>PHYS 202</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 231</td>
<td>1</td>
<td>PHYS 331</td>
<td>2</td>
</tr>
<tr>
<td>MATH 212</td>
<td>3</td>
<td>MATH 211</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 301</td>
<td>4</td>
<td>PHYS 302</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 311</td>
<td>3</td>
<td>PHYS 312</td>
<td>3</td>
</tr>
<tr>
<td>CAAM 336</td>
<td>3</td>
<td>PHYS 332</td>
<td>2</td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>CAAM 335</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
</tbody>
</table>

SENIOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 411</td>
<td>3</td>
<td>PHYS 412</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 425</td>
<td>3</td>
<td>PHYS 492</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 491</td>
<td>2</td>
<td>PHYS 494</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 493</td>
<td>1</td>
<td>DIST</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>3</td>
<td>OPEN</td>
<td>3</td>
</tr>
</tbody>
</table>

This is only one of many possible ways to fulfill your degree requirements.
Physics Minor - Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 101/103</td>
<td>Mechanics (with lab) and Mechanics Discussion or</td>
</tr>
<tr>
<td>or PHYS 111</td>
<td>Mechanics (with lab)</td>
</tr>
<tr>
<td>PHYS 102/104</td>
<td>Electricity and Magnetism (with lab) and E & M Discussion or</td>
</tr>
<tr>
<td>or PHYS 112</td>
<td>Electricity and Magnetism (with lab)</td>
</tr>
<tr>
<td>MATH 101/102</td>
<td>Single Variable Calculus I and II</td>
</tr>
<tr>
<td>MATH 211*</td>
<td>Ordinary Differential Equations and Linear Algebra</td>
</tr>
<tr>
<td>MATH 212*</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>Waves and Optics</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>Modern Physics</td>
</tr>
</tbody>
</table>

Nine additional credit hours of PHYS coursework at the 300-level or above

* MATH 221/222 may substitute for MATH 211/212
Astronomy BA - Requirements

PHYS 101/103 or 111 Mechanics (with Lab) and Mechanics Discussion or Mechanics (with lab)
PHYS 102/104 or 112 Electricity and Magnetism (with Lab) and E & M Discussion or Electricity and Magnetism (with Lab)
PHYS 201 Waves and Optics
PHYS 202 Modern Physics
PHYS 231 Elementary Physics Laboratory
PHYS 301 Intermediate Mechanics
PHYS 302 Intermediate Electrodynamics
ASTR 230 Astronomy Laboratory
ASTR 350 Introduction to Astrophysics - Stars
ASTR 360 Introduction to Astrophysics - Galaxy and Cosmos
ASTR 400 Undergraduate Research Seminar (two credits)

One course from:

- ASTR 451 Astrophysics I – Sun and Stars
- ASTR 452 Astrophysics II – Galaxies and Cosmology
- ASTR 470 Solar System Physics
- PHYS 480 Introduction to Plasma Physics

MATH 101/102 Single Variable Calculus
MATH 211* Ordinary Differential Equations and Linear Algebra
MATH 212* Multivariable Calculus
MECH 200 Classical Thermodynamics

One course from:

- PHYS 331 Junior Physics Lab I
- NSCI 230/COMP 110 Computation in Science and Engineering
- CAAM 210 Introduction to Engineering Computation

* MATH 221/222 may substitute for MATH 211/212
Astronomy BA

FALL

<table>
<thead>
<tr>
<th></th>
<th>FRESHMAN</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 101</td>
<td>Mechanics (with lab)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 103</td>
<td>Mechanics Discussion</td>
<td>0</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
</tr>
<tr>
<td>LPAP</td>
<td>Lifetime Physical Activity Elective</td>
<td>1</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits: 17</td>
</tr>
</tbody>
</table>

SPRING

<table>
<thead>
<tr>
<th></th>
<th>FRESHMAN</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 102</td>
<td>Electricity & Magnetism (with lab)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 104</td>
<td>E & M Discussion</td>
<td>0</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Single Variable Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits: 16</td>
</tr>
</tbody>
</table>

SOPHOMORE

<table>
<thead>
<tr>
<th></th>
<th>SOPHOMORE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 201</td>
<td>Waves and Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 231</td>
<td>Elementary Physics Lab</td>
<td>1</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits: 16</td>
</tr>
</tbody>
</table>

JUNIOR

<table>
<thead>
<tr>
<th></th>
<th>JUNIOR</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 301</td>
<td>Intermediate Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ASTR 350</td>
<td>Intro to Astrophysics - Stars</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 400</td>
<td>Undergraduate Research Seminar</td>
<td>1</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits: 14</td>
</tr>
</tbody>
</table>

SENIOR

<table>
<thead>
<tr>
<th></th>
<th>SENIOR</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 451</td>
<td>Astrophysics I - Sun and Stars</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits: 15</td>
</tr>
</tbody>
</table>

SAMPLE DEGREE PLAN

This is only one of many possible ways to fulfill your degree requirements.
Astrophysics BS - Requirements

PHYS 101/103 or 111 Mechanics (with lab) and Mechanics Discussion or Mechanics (with lab)
PHYS 102/104 or 112 Electricity and Magnetism (with lab) and E & M Discussion or Electricity and Magnetism (with lab)
PHYS 201 Waves and Optics
PHYS 202 Modern Physics
PHYS 231 Elementary Physics Laboratory II
PHYS 301 Intermediate Mechanics
PHYS 302 Intermediate Electrodynamics
PHYS 311 Introduction to Quantum Physics I
PHYS 425 Statistical and Thermal Physics
PHYS 491/493 Undergraduate Research and Undergraduate Research Seminar
PHYS 492/494 Undergraduate Research and Undergraduate Research Seminar
ASTR 230 Astronomy Lab
ASTR 350 Introduction to Astrophysics - Stars
ASTR 360 Introduction to Astrophysics - Galaxy and Cosmos
ASTR 400 Undergraduate Research Seminar (two credits)

Three courses from:

ASTR 451 Astrophysics I – Sun and Stars
ASTR 452 Astrophysics II – Galaxies and Cosmology
ASTR 470 Solar System Physics
PHYS 312 Introduction to Quantum Physics II
PHYS 480 Introduction to Plasma Physics

MATH 101/102 Single Variable Calculus I and II
MATH 211* Ordinary Differential Equations and Linear Algebra
MATH 212* Multivariable Calculus
CAAM 336 Differential Equations in Science and Engineering
NSCI 230/COMP 110 Computation in Science and Engineering or
or CAAM 210 Introduction to Engineering Computation
MECH 200 Classical Thermodynamics

* MATH 221/222 may substitute for MATH 211/212
PHYSICS & ASTRONOMY

Astrophysics BS

Fall Credits: 17

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 101</td>
<td>Mechanics (with lab)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 103</td>
<td>Mechanics Discussion</td>
<td>0</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Single Variable Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>FWIS</td>
<td>First Year Writing-Intensive Seminar</td>
<td>3</td>
</tr>
<tr>
<td>LPAP</td>
<td>Lifetime Physical Activity Elective</td>
<td>1</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Credits: 16

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 102</td>
<td>Electricity & Magnetism (with lab)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 104</td>
<td>E & M Discussion</td>
<td>0</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Single Variable Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore Credits: 16

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 201</td>
<td>Waves and Optics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 231</td>
<td>Elementary Physics Lab</td>
<td>1</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Credits: 17

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 301</td>
<td>Intermediate Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 311</td>
<td>Intro to Quantum Physics I</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 350</td>
<td>Intro to Astrophysics - Stars</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 400</td>
<td>Undergraduate Research Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CAAM 336</td>
<td>Differential Equations in Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Credits: 15

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 425</td>
<td>Statistical and Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 491</td>
<td>Undergraduate Research</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 493</td>
<td>Undergraduate Research Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ASTR 451</td>
<td>Astrophysics I - Sun and Stars</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Credits: 18

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 492</td>
<td>Undergraduate Research</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 494</td>
<td>Undergraduate Research Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ASTR 452</td>
<td>Astrophysics II - Galaxies and Cosmology</td>
<td>3</td>
</tr>
<tr>
<td>DIST</td>
<td>Distribution Course</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td>OPEN</td>
<td>Open Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

This is only one of many possible ways to fulfill your degree requirements.
Degree Requirements

From Rice University’s *General Announcements*, in order to graduate from Rice University, all students must:

- Be registered at Rice full time for at least four full fall and/or spring semesters
- Complete the requirements of at least one major degree program
- Complete at least 120 semester hours (some degree programs require more than 120 hours)
- Complete at least 60 semester hours at Rice University
- Complete at least 48 hours of all degree work in upper-level courses (at the 300 level or higher)
- Complete more than half of the upper-level courses in degree work at Rice
- Complete more than half of the upper-level courses in their major work at Rice (certain departments may specify a higher proportion)
- Complete at least 60 hours outside of their major for Bachelor of Arts and Bachelor of Science degrees (exceptions: requirement does not apply to Bachelor of Science degrees with an engineering major; Architecture majors are required to complete only 36 hours outside the major)
- Complete all Rice courses satisfying degree requirements with a cumulative grade point average of at least 1.67 or higher
- Complete all Rice courses that satisfy major and/or minor requirements (as designated by the department) with a cumulative grade point average of at least 2.00 or higher
- Satisfy the Writing and Communication requirement
- Complete one Lifetime Physical Activity Program (LPAP) course for one credit. Students with disabilities may make special arrangements to satisfy this requirement
- Complete courses to satisfy the distribution requirements (see below)
- Otherwise be a student in good academic and disciplinary standing and not under investigation
Distribution Requirements
Each student is required to complete at least 12 semester hours of designated distribution courses in each of Groups I, II, and III. The 12 hours in each group must include courses in at least two departments in that group.

Students must complete the distribution requirements in each group by taking courses that are designated as a distribution course at the time of course registration, as published in that semester’s Course Offerings.

Dual-Degree Requirements
To earn a second four-year bachelor’s degree, also known as a dual degree, currently enrolled undergraduates who have not yet completed their first bachelor’s degree must:

- Be accepted for the second major by the department
- Fulfill all requirements for the second degree
- Complete at least 30 additional semester hours at Rice beyond the hours required for their first degree (these hours are applied to the second degree)
Major Advisors

BIOSCIENCES

Biochemistry and Cell Biology

Pre-prospective and prospective students/freshmen and undeclared sophomores
Beth Beason-Abmayr bbeason@rice.edu
Liz Eich lizmc@rice.edu
Kathy Matthews ksm@rice.edu
James McNew mcnew@rice.edu
Alma Novotny novotnya@rice.edu
Dereth Phillips derethp@rice.edu
Yousif Shamoo shamoo@rice.edu

Declared Majors and Minors
Kathleen Beckingham (A-H) kate@rice.edu
David Caprette (I-P) caprette@rice.edu
Charles Stewart (Q-Z) crs@rice.edu

Study Abroad Transfer Credit
George Bennett gbennett@rice.edu

Transfer Credit
Dave Caprette caprette@rice.edu

Ecology and Evolutionary Biology
Adrienne Correa adrienne.correa@rice.edu
Scott Solomon scott.solomon@rice.edu

Study Abroad Transfer Credit and Transfer Credit
Scott Solomon scott.solomon@rice.edu

CHEMISTRY (listed by residential college)

Baker
Kristi Kincaid kristi.kincaid@rice.edu

Brown
Zach Ball zb1@rice.edu

Duncan
Michelle Gilbertson mlg7@rice.edu

Hanszen
Jeff Hartgerink jdh@rice.edu

Jones
Bruce Weisman weisman@rice.edu

Lovett
Angel Martí aam4@rice.edu

Martel
Lesa Tran lesa@rice.edu

McMurtry
Seiichi Matsuda matsuda@rice.edu

Sid Rich
Lon Wilson durango@rice.edu

Sid Rich
Ken Whitmire whitmir@rice.edu

Wiess
Christy Landes cflandes@rice.edu

Will Rice
Julianne Yost jyost@rice.edu

Transfer Credit
Phil Brooks brooks@rice.edu
Major Advisors

EARTH SCIENCE

Geology and Environmental
André Droxler andre@rice.edu

Geology and Geochemistry
Julia Morgan morganj@rice.edu

Geology and Geophysics
Dale Sawyer dale@rice.edu

Transfer Credit
Julia Morgan morganj@rice.edu
Dale Sawyer dale@rice.edu

ENVIRONMENTAL STUDIES

ENVIRONMENTAL SCIENCE

Earth Science Concentration
André Droxler andre@rice.edu

Ecology and Evolutionary Biology Concentration
Evan Siemann siemann@rice.edu

Minor Advisor
Dominic Boyer dcb2@rice.edu

Transfer Credit
André Droxler andre@rice.edu

GLOBAL HEALTH TECHNOLOGIES

Veronica Leautaud c12@rice.edu

KINESIOLOGY

Health Sciences
Heidi Perkins hperkins@rice.edu
Nick Iammarino nki@rice.edu
Augusto Rodriguez axr1@rice.edu

Sports Medicine
Augusto Rodriguez axr1@rice.edu
Bruce Etnyre etnyre@rice.edu

Transfer Credit
Nick Iammarino nki@rice.edu
MATHEMATICS

Major Advisors
Zhiyong Gao zgao@rice.edu
Frank Jones fjones@rice.edu
Stephen Semmes semmes@rice.edu
Stephen Wang sswang@rice.edu

Minor Advisors
Zhiyong Gao zgao@rice.edu
Frank Jones fjones@rice.edu
Stephen Semmes semmes@rice.edu

Calculus Coordinator
Stephen Wang sswang@rice.edu

Transfer credit
Frank Jones fjones@rice.edu

NEUROSCIENCE

Janet Braam braam@rice.edu
James McNew mcnew@rice.edu
Simon Fischer-Baum simon.j.fischer-baum@rice.edu
David Dickman david.dickman@rice.edu

PHYSICS AND ASTRONOMY

Astronomy/Astrophysics
Patrick Hartigan hartigan@rice.edu
Christopher Johns-Krull cmj@rice.edu

General Physics
Stan Dodds dodds@rice.edu
Paul Padley padley@rice.edu

Chemical Physics
Jason Hafner hafner@rice.edu

Applied Physics
Douglas Natelson natelson@rice.edu

Biophysics
Ching-Hwa Kiang chkiang@rice.edu

Computational Physics
Frank Toffoletto toffo@rice.edu

Transfer Credit
Patrick Hartigan hartigan@rice.edu (Astronomy)
Stan Dodds dodds@rice.edu (Physics)